1
|
Sharma P, Salunke A, Pandya N, Shah H, Pandya P, Parikh P. De novo Transcriptomic analysis to unveil the deltamethrin induced resistance mechanisms in Callosobruchus chinensis (L.). Sci Rep 2025; 15:5163. [PMID: 39939732 PMCID: PMC11822196 DOI: 10.1038/s41598-025-89466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
The use of synthetic insecticides has been crucial in the management of insect pests however the extensive use of insecticides can result in the development of resistance. Callosobruchus chinensis is a highly destructive pest of stored grains, it's a major feeder and infests a range of stored grains that are vital to both global food security and human nutrition. We extensively investigated gene expression changes of adults in response to deltamethrin to decipher the mechanism behind the insecticide resistance. The analysis of gene expression revealed 25,343 unigenes with a mean length of 1,435 bp. All the expressed genes were identified, and analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Exposure to deltamethrin (4.6 ppm) causes 320 differentially expressed genes (DEGs), of which 280 down-regulated and 50 up-regulated. The transcriptome analysis revealed that DEGs were found to be enriched in pathways related to xenobiotics metabolism, signal transduction, cellular processes, organismal systems and information processing. The quantitative real-time PCR was used to validate the DEGs encoding metabolic detoxification. To the best of our knowledge, these results offer the first toxicity mechanisms enabling a more comprehensive comprehension of the action and detoxification of deltamethrin in C. chinensis.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Ankita Salunke
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Nishi Pandya
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002
| | - Hetvi Shah
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India, 391410
| | - Parth Pandya
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India, 391410.
| | - Pragna Parikh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India, 390002.
| |
Collapse
|
2
|
Li N, Hao L, Li S, Deng J, Yu F, Zhang J, Nie A, Hu X. The NRF-2/HO-1 Signaling Pathway: A Promising Therapeutic Target for Metabolic Dysfunction-Associated Steatotic Liver Disease. J Inflamm Res 2024; 17:8061-8083. [PMID: 39512865 PMCID: PMC11542495 DOI: 10.2147/jir.s490418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder with a rising prevalence. It begins with lipid accumulation in hepatocytes and gradually progresses to Metabolic-associated steatohepatitis (MASH), fibrosis, cirrhosis, and potentially hepatocellular carcinoma (HCC). The pathophysiology of MASLD is complex and involves multiple factors, with oxidative stress playing a crucial role. Oxidative stress drives the progression of MASLD by causing cellular damage, inflammatory responses, and fibrosis, making it a key pathogenic mechanism. The Nuclear Factor Erythroid 2-Related Factor 2 / Heme Oxygenase-1 (Nrf2/HO-1) signaling axis provides robust multi-organ protection against a spectrum of endogenous and exogenous insults, particularly oxidative stress. It plays a pivotal role in mediating antioxidant, anti-inflammatory, and anti-apoptotic responses. Many studies indicate that activating the Nrf2/HO-1 signaling pathway can significantly mitigate the progression of MASLD. This article examines the role of the Nrf2/HO-1 signaling pathway in MASLD and highlights natural compounds that protect against MASLD by targeting Nrf2/HO-1 activation. The findings indicate that the Nrf2/HO-1 signaling pathway holds great promise as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Aiyu Nie
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Xie X, Wang Q, Deng Z, Gu S, Liang G, Li X. Keap1 Negatively Regulates Transcription of Three Counter-Defense Genes and Susceptibility to Plant Toxin Gossypol in Helicoverpa armigera. INSECTS 2024; 15:328. [PMID: 38786884 PMCID: PMC11122223 DOI: 10.3390/insects15050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Expressions of a wide range of cytoprotective counter-defense genes are mainly regulated by the Keap1-Nrf2-ARE signaling pathway in response to oxidative stress from xenobiotics. Gossypol is the major antiherbivore secondary metabolite of cotton, but how the polyphagous pest Helicoverpa armigera copes with this phytochemical to utilize its favorite host plant cotton remains largely elusive. In this study, we first suppressed the Keap1 gene in newly hatched larvae of cotton bollworm by feeding them the siRNA diet for 4 days. All of the larvae were subsequently fed the artificial diet supplied with gossypol or the control diet for 5 days. We identified that the knockdown of the Keap1 gene significantly decreased larval mortality and significantly increased the percentages of larval survival, reaching the fourth instar, compared with ncsiRNA when exposed to a diet containing gossypol. Three counter-defense genes CYP9A17, CYP4L11 and UGT41B3, which were related to the induction or metabolism of gossypol according to the report before, were all significantly up-regulated after the knockdown of the Keap1 gene. The Antioxidant Response Elements (AREs) were also detected in the promoter regions of the three counter-defense genes above. These data indicate that the suppression of the Keap1 gene activates the Keap1-Nrf2-ARE signaling pathway, up-regulates the expressions of counter-defense genes involved in the resistance of oxidative stress and finally contributes to reducing the susceptibility of gossypol. Our results provide more knowledge about the transcriptional regulation mechanisms of counter-defense genes that enable the cotton bollworm to adapt to the diversity of host plants including cotton.
Collapse
Affiliation(s)
- Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China;
| | - Shaohua Gu
- Department of Entomology, China Agricultural University, Beijing 100193, China;
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.X.); (Q.W.)
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
5
|
Amezian D, Fricaux T, de Sousa G, Maiwald F, Huditz HI, Nauen R, Le Goff G. Investigating the role of the ROS/CncC signaling pathway in the response to xenobiotics in Spodoptera frugiperda using Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105563. [PMID: 37666619 DOI: 10.1016/j.pestbp.2023.105563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/06/2023]
Abstract
Spodoptera frugiperda (fall armyworm, FAW) is an invasive polyphagous lepidopteran pest that has developed sophisticated resistance mechanisms involving detoxification enzymes to eliminate toxic compounds it encounters in its diet including insecticides. Although its inventory of detoxification enzymes is known, the mechanisms that enable an adapted response depending on the toxic compound remain largely unexplored. Sf9 cells were used to investigate the role of the transcription factors, Cap n' collar isoform C (CncC) and musculoaponeurotic fibrosarcoma (Maf) in the regulation of the detoxification response. We overexpressed CncC, Maf or both genes, and knocked out (KO) CncC or its repressor Kelch-like ECH associated protein 1 (Keap1). Joint overexpression of CncC and Maf is required to confer increased tolerance to indole 3-carbinol (I3C), a plant secondary metabolite, and to methoprene, an insecticide. Both molecules induce reactive oxygen species (ROS) pulses in the different cell lines. The use of an antioxidant reversed ROS pulses and restored the tolerance to I3C and methoprene. The activity of detoxification enzymes varied according to the cell line. Suppression of Keap1 significantly increased the activity of cytochrome P450s, carboxylesterases and glutathione S-transferases. RNAseq experiments showed that CncC mainly regulates the expression of detoxification genes but is also at the crossroads of several signaling pathways (reproduction and immunity) maintaining homeostasis. We present new data in Sf9 cell lines suggesting that the CncC:Maf pathway plays a central role in FAW response to natural and synthetic xenobiotics. This knowledge helps to better understand detoxification gene expression and may help to design next-generation pest insect control measures.
Collapse
Affiliation(s)
- Dries Amezian
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Thierry Fricaux
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Georges de Sousa
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France
| | - Frank Maiwald
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
| | | | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel-Strasse 50, 40789 Monheim, Germany.
| | - Gaëlle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, F-06903, Sophia Antipolis, France.
| |
Collapse
|
6
|
Jameel M, Alam MF, Fatma H, Singh D, Khan MA, Qureshi MA, Javed S, Younus H, Jamal K, Siddique HR. Flubendiamide induced genetic and cellular damages directly influence the life cycle of the oriental leaf worm, Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105448. [PMID: 37248017 DOI: 10.1016/j.pestbp.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/11/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023]
Abstract
Indiscriminate uses of insecticide greatly damage the environment as well as non-target organisms. Thus, multiple levels of bioassays can help better management of our environment. Flubendiamide is a phthalic acid diamide insecticide that ceases the function of insect muscle leading to paralysis and death. Here, we aimed to explore the effects of Flubendiamide on the life cycle of Spodoptera litura vis-a-vis the mode of action. Fourth instar larvae of the same age (120 ± 2 h) and size were fed with different concentrations (20-80 μg/mL) of Flubendiamide for 12-72 h. We performed a pharmacokinetics study, different biochemical assays, p450, Ecdysone receptor (EcR) and other genes expression analyses by Real-Time PCR and gross damages by Dye exclusion assay and histopathology. Our results demonstrate that the mean concentration of Flubendiamide after 48 h is 9.907 μg/mL and (i) altered the molting, metamorphosis, and reproduction at 80 μg/mL (24 h) (ii) increases all oxidative stress parameters (ROS/RNS, MDA, 8OHdG), decreases oxidative defense mechanisms (SOD, CAT, GST) at 80 μg/mL (48 h) and p450 in a time and concentration-dependent manner, (iii) activates CncC/Maf apoptotic pathways at 80 μg/mL concentration at 24 h while the expression declined from 48 h onwards, (iii) downregulates the EcR expression in a time and concentration-dependent manner, which might be responsible for disturbed molting, metamorphosis, and reproduction, and (iv) increase the expression of apoptotic genes (Caspase 1, -3, and - 5), in time and concentration-dependent manner causing gross morphological and histological damages. In conclusion, indiscriminate use of this insecticide can affect the ecosystem and have the capacity to cause multiple hazardous effects on experimental organisms. Thus, it warrants further investigations to improve and optimize the integrated pest management packages, including Flubendiamide for better management.
Collapse
Affiliation(s)
- Mohd Jameel
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Md Fazle Alam
- Institute of Biomedical Science, Fudan University, Shanghai 200437, China; Department of Biomedical Sciences, College of Rockford, University of Illinois, Chicago, United States of America
| | - Homa Fatma
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Deepti Singh
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mohd Aamir Qureshi
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Saleem Javed
- Department of Biochemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Khowaja Jamal
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| | - Hifzur R Siddique
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
7
|
Jin R, Xiao Z, Nakai M, Huang GH. Insight into the regulation of the Nrf2 pathway in response to ascovirus infection in Spodoptera exigua. PEST MANAGEMENT SCIENCE 2023; 79:1123-1130. [PMID: 36349417 DOI: 10.1002/ps.7284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ascoviruses are a type of entomopathogenic microorganism with high biological pest control potential and are expected to contribute to the natural control of lepidopteran pests. However, knowledge of the molecular mechanism underlying the biocidal activity of ascovirus on its host insects remains limited. RESULTS In this study, the relative enzyme activity of superoxide dismutase and peroxidase, as well as the expression level of Spodoptera exigua peroxidase (SePOD), were found to be significantly increased at 6 h post infection with Heliothis virescens ascovirus 3h (HvAV-3h). H2 O2 accumulation and enhanced expression of NADPH Oxidase (SeNOX) were also observed. In addition, Nuclear Factor erythroid 2-Related Factor 2 (SeNrf2) and muscle aponeurosis fibromatosis (SeMaf) were overexpressed following infection with HvAV-3h. Silencing of SeNrf2 decreased the expression of SePOD, whereas the mortality of SeNrf2-silenced larvae and viral genome copy number also increased. Further RNA interference of SeNOX significantly decreased expression of SeNrf2 and SePOD and therefore increased the mortality and viral genome copy number of the ascovirus-infected host. CONCLUSION The HvAV-3h activated Nrf2/ARE pathway of S. exigua and reactive oxygen species were found to respond to ascovirus infection by regulating alterations in antioxidant enzyme genes mediated by the host Nrf2/ARE pathway. These findings enhance our knowledge of ascovirus-host interactions and lay the foundation for the application of ascoviruses in biological pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruoheng Jin
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, People's Republic of China
| | - Zhengkun Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, People's Republic of China
| | - Madoka Nakai
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
8
|
Cao X, Lu W, Gang Y, Hu B, Wen C. Prx5 of Cristaria plicata has antioxidant function and is regulated by Nrf2/ARE signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108548. [PMID: 36690268 DOI: 10.1016/j.fsi.2023.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Cristaria plicata is one of the more important freshwater pearl bivalves in China, which is susceptible to pathogen infection, and greatly impacts the ability of breeding pearls. Nrf2/ARE signaling pathway and its downstream target gene Prx5 have endogenous antioxidant functions to protect cells from oxidative damage. The full-length cDNA of Prx5 was cloned from C. Plicata, which was 1420 bp, encoding a total of 189 amino acids and had two conserved cysteine residues (Cys78 and Cys179). The amino acid sequence of CpPrx5 was highly similar to Prx5 of other species. Real-time fluorescence quantitative PCR showed that CpPrx5 was distributed in various tissues of mussels, and the highest expression was in hepatopancreas. The expression of CpPrx5 up-regulated in hepatopancreas and gills after LPS, PGN and Poly:I:C stimulation. The recombinant plasmid DE3-PGEX-4T-1-CpPrx5 was expressed in Escherichia coli BL21 and showed antioxidant activity. With the increase of CpPrx5 protein concentration, the superhelical form of DNA was protected. The expression of CpPrx5 was up-regulated after interference CpKeap1 and down-regulated after interference CpNrf2. Gel block assay showed that CpNrf2 and CpMafK proteins blocked CpPrx5 promoter. Subcellular localization showed that CpPrx5 was located in 293T nucleus and cytoplasm and CpMafK was located in 293T nucleus. GST-Pull down verified that CpMafK and CpPrx5 could bind in vitro. These results indicated that Prx5 had antioxidant function and could protects DNA from oxidative damage, and participated in transcriptional regulation by combining with the transcription factor MafK. In addition, MafK could combine with Nrf2 to regulate the downstream target gene Prx5.
Collapse
Affiliation(s)
- Xinying Cao
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Wuting Lu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Yang Gang
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China
| | - Baoqing Hu
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| | - Chungen Wen
- College of Life Science, Education Ministry Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
9
|
Dong B, Liu XY, Li B, Li MY, Li SG, Liu S. A heat shock protein protects against oxidative stress induced by lambda-cyhalothrin in the green peach aphid Myzus persicae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:104995. [PMID: 35082025 DOI: 10.1016/j.pestbp.2021.104995] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Lambda-cyhalothrin (LCT) is a pyrethroid insecticide widely used to control insect pests. Insect exposure to LCT may cause abnormal accumulation of reactive oxygen species (ROS) and result in oxidative damage. Heat shock proteins (HSPs) may help protect against oxidative stress. However, little is known about the role of HSPs in response to LCT in the green peach aphid, Myzus persicae. This insect is an important agricultural pest causing severe yield losses in crops. In this study, we characterized a cDNA sequence (MpHsp70) encoding a member of the HSP70 family in M. persicae. MpHsp70 encoded a 623 amino acid protein putatively localized in the cytosol. The highest expression level of MpHsp70 occurred in fourth-instar nymphs. Treatment of M. persicae with LCT resulted in oxidative stress and significantly increased H2O2 and malondialdehyde levels. This led to an elevated transcription level of MpHsp70. Injection of H2O2 into M. persicae also upregulated the MpHsp70 expression level, suggesting that MpHsp70 is responsive to ROS, particularly H2O2, induced by LCT. Recombinant MpHSP70 protein was expressed in Escherichia coli. E. coli cells overexpressing MpHSP70 exhibited significant tolerance to H2O2 and the ROS generators, cumene hydroperoxide and paraquat. This indicated that MpHSP70 protects against oxidative stress. Furthermore, knockdown of MpHsp70 by RNA interference resulted in increased susceptibility in apterous adults of M. persicae to LCT. These findings indicate that MpHsp70 plays an important role in defense against LCT-induced oxidative stress and insecticide susceptibility in M. persicae.
Collapse
Affiliation(s)
- Bao Dong
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xi-Ya Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Bin Li
- Department of Science and Technology, Sichuan Provincial Branch of China National Tobacco Corporation, Chengdu 610041, China.
| | - Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Li MY, Wang Y, Lei X, Xu CT, Wang DD, Liu S, Li SG. Molecular characterization of a catalase gene from the green peach aphid (Myzus persicae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21835. [PMID: 34309077 DOI: 10.1002/arch.21835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The green peach aphid, Myzus persicae (Sulzer), is a serious agricultural pest with a worldwide distribution. Catalase (CAT), which is encoded by the catalase (Cat) gene, is an extremely important antioxidant enzyme that plays a pivotal role in protecting cells against the toxic effects of hydrogen peroxide. The Cat gene has not been characterized in M. persicae; therefore, this study describes the identification of the Cat (MpCat) gene from M. persicae. MpCat contains an open reading frame of 1515 bp and encodes a MpCAT protein consisting of 504 amino-acid residues. MpCAT possesses features typical of other insect catalases, including 7 conserved amino acids involved in binding heme and 15 involved in binding nicotinamide adenine dinucleotide phosphate. Phylogenetic analysis showed that MpCAT was closely related to orthologs from other aphid species. MpCat consisted of nine exons and eight introns, and the number and insertion sites of introns are consistent with those of Cat genes from Acyrthosiphon pisum (Harris) and Aphis gossypii Glover. The mRNA transcripts of MpCat were detected at all tested developmental stages, with the highest mRNA level in alate adults. The expression of MpCat was significantly upregulated when M. persicae was exposed to low and high temperatures, ultraviolet radiation, Beauveria bassiana, and permethrin. The transcription of MpCat and the activity of catalase were suppressed by RNA interference, and knockdown of MpCat significantly reduced the survival rate in M. persicae under heat stress. The results provide valuable information for further study on the physiological functions of MpCat.
Collapse
Affiliation(s)
- Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yun Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiao Lei
- Department of Tobacco Production and Management, Luzhou Branch of Sichuan Tobacco Corporation, Luzhou, China
| | - Chuan-Tao Xu
- Department of Tobacco Production and Management, Luzhou Branch of Sichuan Tobacco Corporation, Luzhou, China
| | - Dong-Dong Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Shi L, Shi Y, Liu MF, Zhang Y, Liao XL. Transcription factor CncC potentially regulates the expression of multiple detoxification genes that mediate indoxacarb resistance in Spodoptera litura. INSECT SCIENCE 2021; 28:1426-1438. [PMID: 32750195 DOI: 10.1111/1744-7917.12860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/21/2023]
Abstract
The xenobiotic transcription factor cap 'n' collar isoform C (CncC) is considered the central regulator of antioxidant and detoxification genes. Previous research indicated that CncC regulates three-phase enzymes responsible for insecticide resistance. In this study, the SlituCncC gene from Spodoptera litura was obtained and characterized. Quantitative polymerase chain reaction (qPCR) analysis showed that SlituCncC was expressed in all developmental stages and tissues, but was highly expressed in 3rd- and 4th-instar larvae, and in the Malpighian tubule, fat body, and midgut. In addition, SlituCncC was up-regulated and more highly induced with indoxacarb treatment in the indoxacarb-resistant strains compared with the susceptible strain. RNA interference-mediated gene silencing of SlituCncC significantly increased mortality of S. litura when exposed to indoxacarb. Furthermore, comparative transcriptome analysis showed that 842 genes were down-regulated and 127 genes were up-regulated in SlituCncC knockdown S. litura. Further analysis indicated that 18 three-phase enzymes were identified in the down-regulated genes, of which seven were associated with indoxacarb resistance in S. litura. qPCR analysis confirmed that expression of six of these seven genes was consistent with RNA sequencing data. All six detoxification genes were induced by indoxacarb, and the expression patterns were similar to that of SlituCncC. Finally, the CncC-Maf binding site was predicted in all six gene promoters. This study indicates that the transcription factor SlituCncC may regulate multiple detoxification genes that mediate indoxacarb resistance in S. litura.
Collapse
Affiliation(s)
- Li Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Yao Shi
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Meng-Fei Liu
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Ya Zhang
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| | - Xiao-Lan Liao
- Hunan Provincial Engineering and Technology Research Center for Bio-pesticide and Formulation Processing, College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Changsha, China
| |
Collapse
|
12
|
Resistance in the Genus Spodoptera: Key Insect Detoxification Genes. INSECTS 2021; 12:insects12060544. [PMID: 34208014 PMCID: PMC8230579 DOI: 10.3390/insects12060544] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022]
Abstract
The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.
Collapse
|