1
|
Zhou S, Zhang J, Yang Z, Fu Y, Lai Y, Xu X, Xu R, Lü Y, Li Z, Zhao P, Su S, Nie H. Transcriptomic Analysis of Genes Associated with Stinger Development at Different Life Stages of Apis mellifera. Int J Mol Sci 2024; 25:10746. [PMID: 39409075 PMCID: PMC11477386 DOI: 10.3390/ijms251910746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Stingers, evolved from ovipositors, are an important defense organ for the Apidae, Vespidae, and Formicidae species. However, the molecular mechanism of stinger development remains unclear. Here, we show that the earliest time point for the appearance of stingers in Apis mellifera is at the 1-day-old worker pupal stage based on morphological observations and anatomy from the pre-pupal to adult stages. To discover the genes related to stinger development, we first comprehensively compared the stinger transcriptome at different stages and screened 1282, 186, and 166 highly expressed genes in the stingers of 1- and 5-day-old worker pupae and newly emerged worker bees (NEBs), respectively, then identified 25 DEGs involved in the early stage of stinger development. We found that Dll was a key candidate gene in the early development of A. mellifera stingers by combining analyses of the protein-protein interaction network and spatiotemporal expression patterns. An RNAi experiment showed that about 20% of individuals exhibited tip bending in the piercing parts of their stingers in the Dll-dsRNA-treated group, with the morphology presenting as side-side or front-back tip bending. This indicates that Dll plays a vital role in the early development of A. mellifera stingers. Together, our study provides insight into the molecular mechanism of Hymenoptera stinger development and an inspiration for the molecular breeding of gentle honeybee species with stinger abnormalities.
Collapse
Affiliation(s)
- Shiwen Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
- State Key Laboratory of Resource Insects, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Juan Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Zhenhui Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Yunxi Fu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Yu Lai
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Xueling Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Ruixin Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Yang Lü
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, China
| | - Zhiguo Li
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Ping Zhao
- State Key Laboratory of Resource Insects, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Songkun Su
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
| | - Hongyi Nie
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Z.); (J.Z.); (Z.Y.); (Y.F.); (Y.L.); (R.X.); (Y.L.); (Z.L.)
- State Key Laboratory of Resource Insects, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Komal J, Desai HR, Samal I, Mastinu A, Patel RD, Kumar PVD, Majhi PK, Mahanta DK, Bhoi TK. Unveiling the Genetic Symphony: Harnessing CRISPR-Cas Genome Editing for Effective Insect Pest Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:3961. [PMID: 38068598 PMCID: PMC10708123 DOI: 10.3390/plants12233961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 10/16/2024]
Abstract
Phytophagous insects pose a significant threat to global crop yield and food security. The need for increased agricultural output while reducing dependence on harmful synthetic insecticides necessitates the implementation of innovative methods. The utilization of CRISPR-Cas (Clustered regularly interspaced short palindromic repeats) technology to develop insect pest-resistant plants is believed to be a highly effective approach in reducing production expenses and enhancing the profitability of farms. Insect genome research provides vital insights into gene functions, allowing for a better knowledge of insect biology, adaptability, and the development of targeted pest management and disease prevention measures. The CRISPR-Cas gene editing technique has the capability to modify the DNA of insects, either to trigger a gene drive or to overcome their resistance to specific insecticides. The advancements in CRISPR technology and its various applications have shown potential in developing insect-resistant varieties of plants and other strategies for effective pest management through a sustainable approach. This could have significant consequences for ensuring food security. This approach involves using genome editing to create modified insects or crop plants. The article critically analyzed and discussed the potential and challenges associated with exploring and utilizing CRISPR-Cas technology for reducing insect pest pressure in crop plants.
Collapse
Affiliation(s)
- J. Komal
- Basic Seed Multiplication and Training Centre, Central Silk Board, Kharaswan 833216, Jharkhand, India;
| | - H. R. Desai
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - Ipsita Samal
- Indian Council of Agricultural Research-National Research Centre on Litchi, Mushahari, Ramna, Muzaffarpur 842002, Bihar, India;
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, 25123 Brescia, Italy
| | - R. D. Patel
- Department of Entomology, Main Cotton Research Station, Navsari Agricultural University, Surat 395007, Gujarat, India; (H.R.D.); (R.D.P.)
| | - P. V. Dinesh Kumar
- Research Extension Centre, Central Silk Board, Hoshangabad 461001, Madhya Pradesh, India;
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar 751003, Odisha, India;
| | - Deepak Kumar Mahanta
- Forest Entomology Discipline, Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Forest Research Institute (ICFRE-FRI), Dehradun 248006, Uttarakhand, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE)-Arid Forest Research Institute (ICFRE-AFRI), Jodhpur 342005, Rajasthan, India
| |
Collapse
|
3
|
Ma B, Ma C, Li J, Fang Y. Revealing phosphorylation regulatory networks during embryogenesis of honey bee worker and drone (Apis mellifera). Front Cell Dev Biol 2022; 10:1006964. [PMID: 36225314 PMCID: PMC9548569 DOI: 10.3389/fcell.2022.1006964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Protein phosphorylation is known to regulate a comprehensive scenario of critical cellular processes. However, phosphorylation-mediated regulatory networks in honey bee embryogenesis are mainly unknown. We identified 6342 phosphosites from 2438 phosphoproteins and predicted 168 kinases in the honey bee embryo. Generally, the worker and drone develop similar phosphoproteome architectures and major phosphorylation events during embryogenesis. In 24 h embryos, protein kinases A play vital roles in regulating cell proliferation and blastoderm formation. At 48–72 h, kinase subfamily dual-specificity tyrosine-regulated kinase, cyclin-dependent kinase (CDK), and induced pathways related to protein synthesis and morphogenesis suggest the centrality to enhance the germ layer development, organogenesis, and dorsal closure. Notably, workers and drones formulated distinct phosphoproteome signatures. For 24 h embryos, the highly phosphorylated serine/threonine-protein kinase minibrain, microtubule-associated serine/threonine-protein kinase 2 (MAST2), and phosphorylation of mitogen-activated protein kinase 3 (MAPK3) at Thr564 in workers, are likely to regulate the late onset of cell proliferation; in contrast, drone embryos enhanced the expression of CDK12, MAPK3, and MAST2 to promote the massive synthesis of proteins and cytoskeleton. In 48 h, the induced serine/threonine-protein kinase and CDK12 in worker embryos signify their roles in the construction of embryonic tissues and organs; however, the highly activated kinases CDK1, raf homolog serine/threonine-protein kinase, and MAST2 in drone embryos may drive the large-scale establishment of tissues and organs. In 72 h, the activated pathways and kinases associated with cell growth and tissue differentiation in worker embryos may promote the configuration of rudimentary organs. However, kinases implicated in cytoskeleton organization in drone embryos may drive the blastokinesis and dorsal closure. Our hitherto most comprehensive phosphoproteome offers a valuable resource for signaling research on phosphorylation dynamics in honey bee embryos.
Collapse
Affiliation(s)
| | | | - Jianke Li
- *Correspondence: Jianke Li, ; Yu Fang,
| | - Yu Fang
- *Correspondence: Jianke Li, ; Yu Fang,
| |
Collapse
|
4
|
Baci GM, Cucu AA, Giurgiu AI, Muscă AS, Bagameri L, Moise AR, Bobiș O, Rațiu AC, Dezmirean DS. Advances in Editing Silkworms ( Bombyx mori) Genome by Using the CRISPR-Cas System. INSECTS 2021; 13:28. [PMID: 35055871 PMCID: PMC8777690 DOI: 10.3390/insects13010028] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) represents a powerful genome editing technology that revolutionized in a short period of time numerous natural sciences branches. Therefore, extraordinary progress was made in various fields, such as entomology or biotechnology. Bombyx mori is one of the most important insects, not only for the sericulture industry, but for numerous scientific areas. The silkworms play a key role as a model organism, but also as a bioreactor for the recombinant protein production. Nowadays, the CRISPR-Cas genome editing system is frequently used in order to perform gene analyses, to increase the resistance against certain pathogens or as an imaging tool in B. mori. Here, we provide an overview of various studies that made use of CRISPR-Cas for B. mori genome editing, with a focus on emphasizing the high applicability of this system in entomology and biological sciences.
Collapse
Affiliation(s)
- Gabriela-Maria Baci
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandra-Antonia Cucu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Alexandru-Ioan Giurgiu
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adriana-Sebastiana Muscă
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Lilla Bagameri
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Adela Ramona Moise
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | - Otilia Bobiș
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| | | | - Daniel Severus Dezmirean
- Faculty of Animal Science and Biotechnology, University of Animal Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (G.-M.B.); (A.-A.C.); (A.-I.G.); (A.-S.M.); (L.B.); (O.B.); (D.S.D.)
| |
Collapse
|