1
|
Niu RC, Meng FX, Zeng QH, Wang YJ, Liu TX, Chu D, Zhang SZ. Comprehensive Transcriptomic Analyses of Silk-Associated Genes and Functional Characterization of Key Silk Fibroins in Plutella xylostella. Int J Mol Sci 2025; 26:2842. [PMID: 40243449 PMCID: PMC11988815 DOI: 10.3390/ijms26072842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
The diamondback moth (DBM), Plutella xylostella (Lepidoptera: Plutellidae), is a serious agricultural pest that utilizes silk as a defensive mechanism, with silk fibroins playing a pivotal role in this process. Through comprehensive transcriptomic analyses, we identified 3452 differentially expressed genes (DEGs) co-expressed in the silk gland of P. xylostella and associated with silk production. The Gene Ontology (GO) analysis revealed enrichment in categories related to protein synthesis, secretion, and extracellular matrix organization, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis linked these genes to amino acid metabolism and protein processing pathways. Additionally, we identified three key silk fibroin genes: silk fibroin heavy chain (FibH), silk fibroin light chain (FibL), and fibrohexamerin (P25). We characterized the structure of these genes and analyzed the phylogenetic relationships, amino acid composition, hydrophilicity, and other physicochemical properties of the encoded silk fibroin proteins. The expression profiles revealed peak expression levels of these genes in the silk glands of fourth instar larvae. This integrative study enhances our understanding of the molecular mechanisms underlying silk production in P. xylostella and provides a foundation for future research into the biological roles, evolutionary trajectories, and potential applications of these silk fibroin genes in agricultural pest management and biotechnology.
Collapse
Affiliation(s)
- Rui-Chang Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (R.-C.N.); (F.-X.M.); (Q.-H.Z.); (Y.-J.W.)
| | - Fan-Xin Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (R.-C.N.); (F.-X.M.); (Q.-H.Z.); (Y.-J.W.)
| | - Qing-Hui Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (R.-C.N.); (F.-X.M.); (Q.-H.Z.); (Y.-J.W.)
| | - Yi-Jing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (R.-C.N.); (F.-X.M.); (Q.-H.Z.); (Y.-J.W.)
| | - Tong-Xian Liu
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Dong Chu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Shi-Ze Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (R.-C.N.); (F.-X.M.); (Q.-H.Z.); (Y.-J.W.)
| |
Collapse
|
2
|
Masuoka Y, Jouraku A, Tsubota T, Ono H, Chiba H, Sezutsu H, Bono H, Yokoi K. Time-course transcriptome data of silk glands in day 0-7 last-instar larvae of Bombyx mori (w1 pnd strain). Sci Data 2024; 11:709. [PMID: 38942767 PMCID: PMC11213855 DOI: 10.1038/s41597-024-03560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Time-course transcriptome expression data were constructed for four parts of the silk gland (anterior, middle, and posterior parts of the middle silk gland, along with the posterior silk gland) in the domestic silkworm, Bombyx mori, from days 0 to 7 of the last-instar larvae. For sample preparation, silk glands were extracted from one female and one male larva every 24 hours accurately after the fourth ecdysis. The reliability of these transcriptome data was confirmed by comparing the transcripts per million (TPM) values of the silk gene and quantitative reverse transcription PCR results. Hierarchical cluster analysis results supported the reliability of transcriptome data. These data are likely to contribute to the progress in molecular biology and genetic research using B. mori, such as elucidating the mechanism underlying the massive production of silk proteins, conducting entomological research using a meta-analysis as a model for lepidopteran insect species, and exploring medical research using B. mori as a model for disease species by utilising transcriptome data.
Collapse
Affiliation(s)
- Yudai Masuoka
- Insect Design Technology Group, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
- Research Center for Agricultural Information Technology (RCAIT), National Agriculture and Food Research Organization (NARO), 1-31-1 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Akiya Jouraku
- Insect Design Technology Group, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takuya Tsubota
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiromasa Ono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
- PtBio Inc., 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
| | - Hirokazu Chiba
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan
| | - Hideki Sezutsu
- Silkworm Research Group, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa, Chiba, 277-0871, Japan
- Laboratory of BioDX, PtBio Co-Creation Research Center, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
| | - Kakeru Yokoi
- Insect Design Technology Group, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan.
- Research Center for Agricultural Information Technology (RCAIT), National Agriculture and Food Research Organization (NARO), 1-31-1 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
| |
Collapse
|
3
|
Hashimoto S, Yamazaki M, Uehara H, Yamazaki S, Kobayashi M, Yokoyama T, Yazawa K, Shiomi K. Evaluating bio-physicochemical properties of raw powder prepared from whole larvae containing liquid silk of the domestic silkworm. Front Nutr 2024; 11:1404489. [PMID: 38903626 PMCID: PMC11188413 DOI: 10.3389/fnut.2024.1404489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
The domestic silkworm, Bombyx mori, has been widely used in silk production for centuries. It is also used as a bioreactor by the textile and pharmaceutical industries to mass produce recombinant bioactive proteins containing silk-based materials. Furthermore, silkworms are well-known as a source of food and have also been orally administered to prevent and treat several human disorders. In this study, we aimed to investigate the inherent bio-physicochemical properties of edible silkworms to accurately evaluate their clinical and nutritional potential. We prepared raw powder from whole larvae of silkworm. The yield rate of the powder derived from dried larvae was almost 100% (98.1-99.1% in replicates). As "percentage yield" translates to "Budomari" in Japanese, this raw powder was named "B100rw." We further prepared B100dn that was denatured through autoclaving. Thereafter, we examined whether B100rw sustained the original bio-physicochemical properties by comparing it with B100dn. There was no significant difference in nutritional content between B100rw and B100dn. B100rw contained proteins derived from silkworm larvae and mulberry leaves, whereas the proteins of B100dn were mostly degraded. On measuring the enzymatic activity of both powders using trehalase as an indicator enzyme, B100rw was found to maintain trehalase activity. B100rw also maintained a random coil conformation, similar to that of liquid silk. This suggested that B100rw sustained the unique bio-physicochemical properties of living larvae. These findings may facilitate the development of novel food products or orally administered vaccines.
Collapse
Affiliation(s)
- Shusuke Hashimoto
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Maki Yamazaki
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Hiroshi Uehara
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
- Morus Inc., Tokyo, Japan
| | - Shinya Yamazaki
- Department of Food Technology, Nagano Prefecture General Industrial Technology Center, Nagano, Japan
| | - Masakazu Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Takeshi Yokoyama
- Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Kenjiro Yazawa
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Kunihiro Shiomi
- Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
4
|
Cappellozza S, Casartelli M, Sandrelli F, Saviane A, Tettamanti G. Silkworm and Silk: Traditional and Innovative Applications. INSECTS 2022; 13:1016. [PMID: 36354840 PMCID: PMC9698470 DOI: 10.3390/insects13111016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The various subjects covered in the present Special Issue "Silkworm and Silk: Traditional and Innovative Applications" demonstrate how sericulture, a practice deeply rooted in human history, can act as a bridge to bring together an exceptionally wide range of scientific and technical expertise in both conventional topics and cutting-edge technologies [...].
Collapse
Affiliation(s)
- Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre Agriculture and Environment, Sericulture Laboratory, 35143 Padova, Italy
| | - Morena Casartelli
- Department of Biosciences, University of Milan, 20133 Milano, Italy
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | | | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre Agriculture and Environment, Sericulture Laboratory, 35143 Padova, Italy
| | - Gianluca Tettamanti
- Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
5
|
Yokoi K, Wakamiya T, Bono H. Meta-Analysis of the Public RNA-Seq Data of the Western Honeybee Apis mellifera to Construct Reference Transcriptome Data. INSECTS 2022; 13:931. [PMID: 36292879 PMCID: PMC9604386 DOI: 10.3390/insects13100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The Western honeybee (Apis mellifera) is valuable in biological research and agriculture. Its genome sequence was published before those for other insect species. RNA-Seq data for A. mellifera have been applied in several recently published studies. Nevertheless, these data have not been prepared for use in subsequent meta-analyses. To promote A. mellifera transcriptome analysis, we constructed reference transcriptome data using the reference genome sequence and RNA-Seq data curated from about 1,000 runs of public databases. The new reference transcriptome data construct comprised 149,685 transcripts, and 194,174 protein sequences were predicted. Approximately 50-60% of the predicted protein sequences were functionally annotated using the protein sequence data for several model and insect species. Novel candidate immune-related transcripts were searched by meta-analysis using immune-response-related RNA-Seq and reference transcriptome data. Three to twenty candidate transcripts including autophagy-related protein 3 were upregulated or downregulated in response to both viral and bacterial infections. The constructed reference transcriptome data may facilitate future transcriptome analyses of A. mellifera.
Collapse
Affiliation(s)
- Kakeru Yokoi
- Insect Design Technology Module, Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba 305-8634, Ibaraki, Japan
| | - Takeshi Wakamiya
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
| | - Hidemasa Bono
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
- Laboratory of BioDX, Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima City 739-0046, Hiroshima, Japan
| |
Collapse
|