1
|
Xu B, Liu Z, Shen Y, Cheng Y, Song P, Wang F, Chao Z. Comprehensive Analysis on Physicochemical Properties and Characteristic Compounds of Insect-Infested Ziziphi Spinosae Semen. Metabolites 2025; 15:188. [PMID: 40137152 PMCID: PMC11944026 DOI: 10.3390/metabo15030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Objectives: Ziziphi spinosae semen (ZSS), an edible and medicinal substance, was easily infested by Plodia interpunctella (P. interpunctella) during storage. However, there was no identification method for insect-infested ZSS based on its chemical composition. Therefore, the characteristic compounds in ZSS before and after being infested by P. interpunctella were discovered based on the comparison of volatile organic compounds (VOCs), untargeted metabolomics, and other quality characters. Methods: Color, total flavonoid content (TFC), and main active compound content were measured to explore the change of physicochemical properties in ZSS after being infested by P. interpunctella. Non-targeted metabolomic techniques, including ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were used to assess molecular-level alterations. Results: The color changed significantly. The TFC and main active compounds of spinosin, jujuboside A, jujuboside B, and betulinic acid were decreased significantly. A total of nine VOCs and twenty-one metabolites were screened out that could be used to identify whether ZSS was infested. And some metabolites, such as uric acid, gluconic acid, hypoxanthine, and xanthine, were discovered as characteristic compounds in ZSS after being infested by P. interpunctella. Conclusions: The study provided the basis and reference for the identification of insect-infested ZSS and offered an example for the identification of other insect-infested edible and medicinal materials.
Collapse
Affiliation(s)
- Bo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (P.S.)
- Department of Pharmacy, Beijing Health Vocational College, Beijing 101101, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (P.S.)
- Graduate School of China Academy of Chinese Medical Science, Beijing 101101, China
| | - Yanzhen Shen
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China (F.W.)
| | - Yunxia Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (P.S.)
| | - Pingping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (P.S.)
| | - Feifei Wang
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China (F.W.)
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China (P.S.)
- Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China (F.W.)
| |
Collapse
|
2
|
Hayat U, Shi J, Wu Z, Rizwan M, Haider MS. Which SDM Model, CLIMEX vs. MaxEnt, Best Forecasts Aeolesthes sarta Distribution at a Global Scale under Climate Change Scenarios? INSECTS 2024; 15:324. [PMID: 38786880 PMCID: PMC11121915 DOI: 10.3390/insects15050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
A precise evaluation of the risk of establishing insect pests is essential for national plant protection organizations. This accuracy is crucial in negotiating international trade agreements for forestry-related commodities, which have the potential to carry pests and lead to unintended introductions in the importing countries. In our study, we employed both mechanistic and correlative niche models to assess and map the global patterns of potential establishment for Aeolesthes sarta under current and future climates. This insect is a significant pest affecting tree species of the genus Populus, Salix, Acer, Malus, Juglans, and other hardwood trees. Notably, it is also categorized as a quarantine pest in countries where it is not currently present. The mechanistic model, CLIMEX, was calibrated using species-specific physiological tolerance thresholds, providing a detailed understanding of the environmental factors influencing the species. In contrast, the correlative model, maximum entropy (MaxEnt), utilized species occurrences and spatial climatic data, offering insights into the species' distribution based on observed data and environmental conditions. The projected potential distribution from CLIMEX and MaxEnt models aligns well with the currently known distribution of A. sarta. CLIMEX predicts a broader global distribution than MaxEnt, indicating that most central and southern hemispheres are suitable for its distribution, excluding the extreme northern hemisphere, central African countries, and the northern part of Australia. Both models accurately predict the known distribution of A. sarta in the Asian continent, and their projections suggest a slight overall increase in the global distribution range of A. sarta with future changes in climate temperature, majorly concentrating in the central and northern hemispheres. Furthermore, the models anticipate suitable conditions in Europe and North America, where A. sarta currently does not occur but where its preferred host species, Populus alba, is present. The main environmental variables associated with the distribution of A. sarta at a global level were the average annual temperature and precipitation rate. The predictive models developed in this study offer insights into the global risk of A. sarta establishment and can be valuable for monitoring potential pest introductions in different countries. Additionally, policymakers and trade negotiators can utilize these models to make science-based decisions regarding pest management and international trade agreements.
Collapse
Affiliation(s)
- Umer Hayat
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China; (U.H.)
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Juan Shi
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China; (U.H.)
| | - Zhuojin Wu
- Sino-France Joint Laboratory for Invasive Forest Pests in Eurasia, Beijing Forestry University, Beijing 100083, China; (U.H.)
- Beijing Key Laboratory for Forest Pest Control, School of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Muhammad Rizwan
- Department of Plant Medicine (Entomology), College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Sajjad Haider
- Department of Forestry, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
3
|
Neupane N, Larsen EA, Ries L. Ecological forecasts of insect range dynamics: a broad range of taxa includes winners and losers under future climate. CURRENT OPINION IN INSECT SCIENCE 2024; 62:101159. [PMID: 38199562 DOI: 10.1016/j.cois.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Species distribution models are the primary tools to project future species' distributions, but this complex task is influenced by data limitations and evolving best practices. The majority of the 53 studies we examined utilized correlative models and did not follow current best practices for validating retrospective or future environmental data layers. Despite this, a summary of results is largely unsurprising: shifts toward cooler regions, but otherwise mixed dynamics emphasizing winners and losers. Harmful insects were more likely to show positive outcomes compared with beneficial species. Our restricted ability to consider mechanisms complicates interpretation of any single study. To improve this area of modeling, more classic field and lab studies to uncover basic ecology and physiology are crucial.
Collapse
Affiliation(s)
- Naresh Neupane
- Georgetown University, Department of Biology, Washington, DC 20057, USA.
| | - Elise A Larsen
- Georgetown University, Department of Biology, Washington, DC 20057, USA
| | - Leslie Ries
- Georgetown University, Department of Biology, Washington, DC 20057, USA
| |
Collapse
|
4
|
Zhao J, Zheng R, Li X, Lyu Z, Ma L, Song C, Qie X, Yan X, Hao C. Electrophysiological and Behavioral Responses of Plodia interpunctella (Hübner) Females to Aldehyde Volatiles from Dried Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37921278 DOI: 10.1021/acs.jafc.3c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Plodia interpunctella (Lepidoptera: Pyraloidea) is a notorious pest of stored grain globally. The dried fruits (Ziziphus jujuba, Malus pumila, and Fragaria ananassa) can strongly attract P. interpunctella. However, specific volatile compounds responsible for such effects have not been identified. Volatiles were analyzed by using headspace solid-phase microextraction (HS-SPME) and chromatography-mass spectrometry (GCMS) techniques. Five aldehyde compounds were selected for electroantennogram (EAG), single sensillum recording (SSR), and behavioral response assays. The three chemicals that elicited the strongest EAG responses to mated females at 100 μg/μL include hexanal (1.13 mV), heptanal (0.92 mV), and octanal (0.73 mV). In SSR experiments, the basiconic sensilla of the antennae responded to these aldehyde compounds. The results of behavioral responses showed that all aldehydes exhibited dose-dependent responses, with hexanal having the highest attractant rate of 74.56%. These compounds have the potential to be used for monitoring P. interpunctella and its integrated management program.
Collapse
Affiliation(s)
- Jinyu Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Ruirui Zheng
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Xiaofei Li
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Zhishen Lyu
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Chengfei Song
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| | - Chi Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, P. R. China
| |
Collapse
|
5
|
Cheng Y, Liu Z, Xu B, Song P, Chao Z. Comprehensive metabolomic variations of hawthorn before and after insect infestation based on the combination analysis of 1H NMR and UPLC-MS. Curr Res Food Sci 2023; 7:100616. [PMID: 37881336 PMCID: PMC10594559 DOI: 10.1016/j.crfs.2023.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Hawthorn, the sliced and dried ripe fruits of Crataegus pinnatifida Bge. Var. Major N. E. Br. (Rosaceae), is an edible and medicinal substance with a variety of health-promoting benefits. Hawthorn needs to be stored in warehouses after harvesting to meet people's perennial demand. However, it is easily infested by insects of Plodia interpunctella and Tribolium castaneum during storage, which inevitably leads to poor quality and causes adverse effects on people's health. So far, there has been no report on insect-infested hawthorn. In this study, we analyzed the changes of metabolites in hawthorn before and after insect infestation and screened out potential biomarkers to effectively and quickly detect the occurrence of insect infestation. A combination analysis of 1H nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used to identify the primary and secondary metabolites. By the comparison of hawthorn and insect-infested hawthorn samples, it was found that the differences were mainly manifested in the content of metabolites. The metabolites of 32 and 1463 were identified by 1H NMR and UPLC-MS analysis, respectively. According to the parameters of VIP >1 and P < 0.05, 10 differential metabolites were screened from 1H NMR analysis. Based on the parameters of VIP >1.0, P < 0.05, and (FC) > 1 or < 1, 47 differential metabolites were screened from UPLC-MS analysis. Therefore, a total of 57 differential metabolites were considered as differential biomarkers. The heat map analysis showed that the content of some differential biomarkers with significant pharmacological activities decreased after insect infestation. Through receiver operating characteristic (ROC) curve assessment, 52 differential biomarkers (6 of 1H NMR analysis and 46 of UPLC-MS analysis) were screened to distinguish whether insect infestation occurred in hawthorn. This is the first report on the changes of metabolites between hawthorn and insect-infested hawthorn and on the screening of differential biomarkers for monitoring insects. These results contributed to evaluate quality of hawthorn and ensure food safety for consumers. It also laid a foundation for further research on the infestation mechanism and safe storage monitoring in hawthorn.
Collapse
Affiliation(s)
- Yunxia Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Pingping Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhimao Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|