1
|
Mu T, Luo S, Li L, Zhang R, Wang P, Zhang G. A review of the interaction mechanisms between jasmonic acid (JA) and various plant hormones, as well as the core regulatory role of MYC2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112407. [PMID: 39894056 DOI: 10.1016/j.plantsci.2025.112407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/12/2024] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Jasmonic acid (JA), as a defensive plant hormone, can synergistically or antagonistically interact with common hormones such as gibberellin (GA), abscisic acid (ABA), indole-3-acetic hormone acid (IAA), and ethylene (ETH) during the plant growth process, as well as interact with hormones such as melatonin (MT), brassinolide (BR), and resveratrol to regulate plant growth and development processes such as metabolite synthesis, pest and disease defense, and organ growth. The core regulatory factor MYC2 of JA mainly mediates the signal transduction pathways of these hormone interactions by interacting with other genes or regulating transcription. This article reviews the mechanism of cross-talk between JA and hormones such as ABA, GA, and salicylic acid (SA), and discusses the role of MYC2 in hormone interactions.
Collapse
Affiliation(s)
- Tingting Mu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Long Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Rongrong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; State Key Laboratory of Aridland Crop Science (Gansu Agricultural University), Lanzhou 730070, China.
| |
Collapse
|
2
|
Meng C, Peng X, Zhang Y, Pedro GC, Li Y, Zhang Y, Duan Y, Sun X. Transcriptomic profiling of Poa pratensis L. under treatment of various phytohormones. Sci Data 2024; 11:297. [PMID: 38491031 PMCID: PMC10942976 DOI: 10.1038/s41597-024-03119-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Poa pratensis L. (Poaceae) is a valuable grass across the north hemisphere, inhabiting diverse environments with wide altitudinal span, where ubiquitous various kinds of stresses. Phytohormones would be helpful to improve tolerance to abiotic and biotic stresses, but the responses of transcriptome regulation of P. pratensis to exogenous phytohormones application remain unclear. In this study, we explored the alteration of plant physiological responses by the application of phytohormones. Aiming to achieve this knowledge, we got full-length transcriptome data 42.76 Gb, of which 74.9% of transcripts were completed. Then used 27 samples representing four treatments conducted at two time points (1 h and 6 h after application) to generate RNA-seq data. 371 and 907 common DEGs were identified in response to four phytohormones application, respectively, these DEGs were involved in "plant hormone signal transduction", "carbon metabolism" and "plant-pathogen interaction". Finally, P. pratensis basic research can gain valuable information regarding the responses to exogenous application of phytohormones in physiological indicators and transcriptional regulations in order to facilitate the development of new cultivars.
Collapse
Affiliation(s)
- Chen Meng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education and School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Peng
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yumeng Li
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanni Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education and School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, PR China
| | - Yuanwen Duan
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Xudong Sun
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|