1
|
Šreibr S, Ilgová J, Dobeš P, Vorel J, Marciniak J, Hurychová J, Toubarro D, Simões N, Kašný M, Hyršl P. Characterization of Heterorhabditis bacteriophora response to insect-derived and non-biological stimuli: Insights into nematode recovery and released proteins. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106318. [PMID: 40015910 DOI: 10.1016/j.pestbp.2025.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 03/01/2025]
Abstract
Entomopathogenic nematodes (EPNs) are biological control agents that naturally kill insect pests, providing an eco-friendly alternative to chemical pesticides. Despite extensive research, the mechanisms behind the recovery process, where infective juveniles (IJs) transition to a parasitic state upon contact with the host, remain unclear. This study investigates the stimulatory effect of insect-derived materials on the recovery of Heterorhabditis bacteriophora IJs. Three materials from Galleria mellonella larvae-bioactive homogenates from live and frozen larvae, and heat-inactivated homogenate-were tested, along with non-host stimuli including filtered water and phosphate-buffered saline (PBS). While none of the materials induced complete recovery of IJs, all triggered the release of excreted/secreted products (ESPs), with consistent protein concentrations across treatments. However, mass spectrometry revealed significant differences in ESP protein composition. IJs exposed to PBS released the highest number of proteins, while bioactive homogenates induced the fewest. Proteins linked to host-parasite interactions, such as alpha-2-macroglobulins and trypsin inhibitor-like proteins, were more abundant in ESPs following exposure to insect-derived materials and PBS. Interestingly, nematodes exposed to water released a substantial number of proteins, comparable to stimulation by heat-inactivated homogenates, though their protein profiles were distinct, reflecting stress responses in the former and host-parasite interaction-related proteins in the latter. Our findings demonstrate that both host-derived and non-biological stimuli can trigger IJs recovery and ESPs release, underscoring the complexity of host-nematode interactions. These results provide novel insights into molecular mechanisms underlying H. bacteriophora parasitism and may contribute to optimizing biocontrol strategies through a better understanding of nematode activation and released ESPs.
Collapse
Affiliation(s)
- Sara Šreibr
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Ilgová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic.
| | - Jiří Vorel
- CESNET z.s.p.o., 160 00 Prague, Czech Republic
| | - Jacek Marciniak
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal
| | - Nelson Simões
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal
| | - Martin Kašný
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Mbata GN, Browning K, Warsi S, Li Y, Ellis JD, Kanga LH, Shapiro-Ilan DI. Comparative Virulence of Entomopathogenic Nematodes to the Small Hive Beetle ( Aethina tumida Murray, Coleoptera: Nitidulidae). J Nematol 2025; 57:20250011. [PMID: 40161028 PMCID: PMC11954647 DOI: 10.2478/jofnem-2025-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/02/2025] Open
Abstract
The small hive beetle (SHB), Aethina tumida Murray (Coleoptera: Nitidulidae), has become a ubiquitous, invasive, and highly destructive pest of western honeybee (Apis mellifera Linnaeus) hives worldwide. Beekeepers often attempt to control this beetle chemically. Still, ineffective registered control options and rampant off-label chemical use in the beekeeping industry have driven research toward alternative pest management strategies. Entomopathogenic nematodes (EPNs) of the families Heterorhabditidae and Steinernematidae have been established as potential biocontrol agents against soil-dwelling insect pests. However, studies are needed to determine the most appropriate EPN species to control SHB. In this study, an LD50 of ~700 infective juveniles (IJs) of EPN per SHB larva was determined through dose-response experiments. This application rate was used to compare the virulence of the following seven species of EPNs against SHB larvae: Heterorhabditis bacteriophora (VS), H. floridensis (K22), H. georgiana (Kesha), H. indica (HOM1), Steinernema carpocapsae (All), S. rarum (17C+E), and S. riobrave (355). Steinernema carpocapsae (All) and H. floridensis (K22) were found to cause 100% larval mortality of SHB at 14 days post-inoculation. Assays for the persistence of virulence of H. floridensis (K22) and S. carpocapsae in the soil over several weeks from a single application found that both species maintained efficacy, causing 96% mortality of SHB larvae by week 6 post-inoculation. We recommend that S. carpocapsae (All) and H. floridensis (K22) due to their superior virulence for the control of small hive beetles.
Collapse
Affiliation(s)
- George N. Mbata
- Entomology Research Laboratory, Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA31030, USA
| | - Kaitlyn Browning
- Entomology Research Laboratory, Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA31030, USA
| | - Sanower Warsi
- Entomology Research Laboratory, Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA31030, USA
| | - Yinping Li
- Entomology Research Laboratory, Agricultural Research Station, Fort Valley State University, 1005 State University Drive, Fort Valley, GA31030, USA
| | - James D. Ellis
- Honeybee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, Steinmetz Hall, Gainesville, FL32611-0620, USA
| | - Lambert H. Kanga
- Center for Biological Control, Florida A&M University, 406 Perry-Paige Building, Tallahassee, FL32307, USA
| | | |
Collapse
|
3
|
Askar AG, Yüksel E, Bozbuğa R, Öcal A, Kütük H, Dinçer D, Canhilal R, Dababat AA, İmren M. Evaluation of Entomopathogenic Nematodes against Common Wireworm Species in Potato Cultivation. Pathogens 2023; 12:pathogens12020288. [PMID: 36839560 PMCID: PMC9961910 DOI: 10.3390/pathogens12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
Wireworms (Coleoptera: Elateridae) are common insect pests that attack a wide range of economically important crops including potatoes. The control of wireworms is of prime importance in potato production due to the potential damage of the larvae to tuber quantity and quality. Chemical insecticides, the main control strategy against wireworms, generally fail to provide satisfactory control due to the lack of available chemicals and the soil-dwelling habits of the larvae. In the last decades, new eco-friendly concepts have emerged in the sustainable control of wireworms, one of which is entomopathogenic nematodes (EPNs). EPNs are soil-inhabitant organisms and represent an ecological approach to controlling a great variety of soil-dwelling insect pests. In this study, the susceptibility of Agriotes sputator Linnaeus and A. rufipalpis Brullé larvae, the most common wireworm species in potato cultivation in Türkiye, to native EPN strains [Steinernema carpocapsae (Sc_BL22), S. feltiae (Sf_BL24 and Sf_KAY4), and Heterorhabditis bacteriophora (Hb_KAY10 and Hb_AF12)] were evaluated at two temperatures (25 and 30 °C) in pot experiments. Heterorhabditis bacteriophora Hb_AF12 was the most effective strain at 30 °C six days post-inoculation and caused 37.5% mortality to A. rufipalpis larvae. Agriotes sputator larvae were more susceptible to tested EPNs at the same exposure time, and 50% mortality was achieved by two EPNs species, Hb_AF12 and Sc_BL22. All EPN species/strains induced mortality over 70% to both wireworm species at both temperatures at 100 IJs/cm2, 18 days post-treatment. The results suggest that tested EPN species/strains have great potential in the control of A. sputator and A. rufipalpis larvae.
Collapse
Affiliation(s)
- Arife Gümüş Askar
- Istanbul Directorate of Agricultural Quarantine, Bakırköy, 34149 Istanbul, Türkiye
- Correspondence: (A.G.A.); (E.Y.)
| | - Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Melikgazi, 38030 Kayseri, Türkiye
- Correspondence: (A.G.A.); (E.Y.)
| | - Refik Bozbuğa
- Department of Plant Protection, Faculty of Agriculture, Eskişehir Osmangazi University, Odunpazarı, 26160 Eskişehir, Türkiye
| | - Atilla Öcal
- Atatürk Horticultural Central Research Institute, Merkez, 77100 Yalova, Türkiye
| | - Halil Kütük
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Gölköy, 14030 Bolu, Türkiye
| | - Dilek Dinçer
- Biological Control Research Institute, Yüreğir, 01321 Adana, Türkiye
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Melikgazi, 38030 Kayseri, Türkiye
| | - Abdelfattah A. Dababat
- International Maize and Wheat Improvement Centre (CIMMYT) 39, Emek, 06511 Ankara, Türkiye
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Gölköy, 14030 Bolu, Türkiye
| |
Collapse
|
4
|
Gümüşsoy A, Yüksel E, Özer G, İmren M, Canhilal R, Amer M, Dababat AA. Identification and Biocontrol Potential of Entomopathogenic Nematodes and Their Endosymbiotic Bacteria in Apple Orchards against the Codling Moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). INSECTS 2022; 13:1085. [PMID: 36554995 PMCID: PMC9786672 DOI: 10.3390/insects13121085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
The codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is one of the major pests in pome fruit production worldwide. Heavy treatment of the larvae of C. pomonella with insecticides triggered the development of resistance to many groups of insecticides. In addition, the increasing concern about the adverse effects of synthetic insecticides on human health and the environment has led to the development of sustainable and eco-friendly control practices for C. pomonella. The entomopathogenic nematodes (EPNs) (Steinernema and Heterorhabditis spp.) and their endosymbionts (Xenorhabdus and Photorhabdus spp.) represent a newly emerging approach to controlling a wide range of insect pests. In the present study, field surveys were conducted in apple orchards to isolate and identify EPNs and their endosymbionts and evaluate their insecticidal efficacy on the larvae of C. pomonella. EPNs were isolated from 12 of 100 soil samples (12%). Seven samples were identified as Steinernema feltiae (Filipjev, 1934) (Rhabditida: Steinernematidae), whereas five samples were assigned to Heterorhabditis bacteriophora (Poinar, 1976) (Rhabditida: Heterorhabditidae). The pathogenicity of the EPN species/isolates was screened on the last instar larvae of G. mellonella. The two most pathogenic isolates from each EPN species were tested against fifth instar larvae of C. pomonella under controlled conditions. The maximum mortality (100%) was achieved by all EPN species/isolates at a concentration of 100 IJs/larva 96 h after treatment. The endosymbionts of selected H. bacteriophora and S. feltiae species were identified as Photorhabdus luminescens subsp. kayaii and Xenorhabdus bovienii, respectively. The mortality rates ranged between 25 and 62% when the fifth larval instar larvae of C. pomonella were exposed to the treatment of cell-free supernatants of symbiotic bacteria. In essence, the present survey indicated that EPNs and their symbiotic bacteria have good potential for biological control of C. pomonella.
Collapse
Affiliation(s)
- Asım Gümüşsoy
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, Melikgazi, 38030 Kayseri, Türkiye
| | - Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, Melikgazi, 38030 Kayseri, Türkiye
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Abant Izzet Baysal University, 14030 Bolu, Türkiye
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, Melikgazi, 38030 Kayseri, Türkiye
| | - Mohammed Amer
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | | |
Collapse
|
5
|
Abstract
Entomopathogenic nematodes (EPNs) infect and kill insects and have been successfully used in the biological control of some insect pests. Slugs and snails are known to be significant pests of agriculture and serve as vectors for disease-causing microbes that can affect crops and humans. The potential of EPNs to be used in the biological control of gastropods has not been well-studied. The few studies that have been performed on the efficacy of EPNs in controlling gastropod pests and vectors were reviewed. Suggested criteria for further assessments of EPN-gastropod interactions are: Dose of EPNs used, length of infection assays, host biology, nematode biology and development, and Koch's postulates. There are provocative data suggesting that EPNs may be useful biological control agents against gastropod pests of agriculture and vectors of disease, though additional studies using the suggested criteria are needed, including the publication of negative data or studies where EPNs were not efficacious or successful in controlling gastropods.
Collapse
Affiliation(s)
- Jacob Schurkman
- Department of Nematology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521
| | - Adler R Dillman
- Department of Nematology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521
| |
Collapse
|
6
|
Zart M, de Macedo MF, Simões Santos Rando J, Doneze GS, Brito CP, de Souza Poletto R, Alves VS. Performance of entomopathogenic nematodes on the mealybug, Dysmicoccus brevipes (Hemiptera: Pseudococcidae) and the compatibility of control agents with nematodes. J Nematol 2021; 53:e2021-020. [PMID: 33860237 PMCID: PMC8039974 DOI: 10.21307/jofnem-2021-020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 11/21/2022] Open
Abstract
The performance of nine isolates of Heterorhabditis amazonensis and one of Heterorhabditis indica on the mealybug Dysmicoccus brevipes, (Hemiptera: Pseudococcidae), were evaluated. The most virulent isolates were evaluated for nematode vertical and horizontal dispersal, and for efficiency at concentrations of 0 (control), 25, 50, 75, and 100 infective juveniles (IJs)/cm2 on adult females of the insect. A compatibility assessment was also carried out with commercial products, registered or in the process of registration, for use in the cassava culture. The isolates that caused the highest mortality rate of D. brevipes were NEPET11 (93.8% ± 4.1) and IBCB-n40 (84.0% ± 8.1), both isolates of Heterorhabditis amazonensis, while the isolate NEPET11 was more virulent than IBCB-n40 at all concentrations evaluated. In the dispersal test, the NEPET11 isolate caused mortality in the mealybug at a depth of up to 20 cm and a horizontal displacement of 7.25 cm. In the compatibility test, the NEPET11 isolate exhibited reduced viability due to the products Poquer, Tiguer 100 EC, Actara 250 WG, and Gaucho FS. The insecticide Curyom 550 EC was the only one that reduced infectivity (reduction of 92%) and is the only product classified as moderately toxic, while all the others were classified as compatible based on E%.
Collapse
Affiliation(s)
- Marcelo Zart
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, IFRS, Ibirubá, Rio Grande do Sul, Brazil
| | | | - Jael Simões Santos Rando
- Universidade Estadual do Norte do Paraná, Laboratório de Entomologia e Nematologia, Bandeirantes, Brazil
| | - Gabriela Souza Doneze
- Universidade Estadual do Norte do Paraná, Laboratório de Entomologia e Controle Microbiano (LECOM), Cornélio Procópio, Paraná, Brazil
| | - Cassia Pereira Brito
- Universidade Estadual do Norte do Paraná, Laboratório de Entomologia e Controle Microbiano (LECOM), Cornélio Procópio, Paraná, Brazil
| | - Rodrigo de Souza Poletto
- Universidade Estadual do Norte do Paraná, Laboratório Interdisciplinar de Pesquisa e Ensino de Botânica e Educação Ambiental (LIPEBEA), Cornélio Procópio, Paraná, Brazil
| | - Viviane Sandra Alves
- Universidade Estadual do Norte do Paraná, Laboratório de Entomologia e Controle Microbiano (LECOM), Cornélio Procópio, Paraná, Brazil
| |
Collapse
|
7
|
A putative UDP-glycosyltransferase from Heterorhabditis bacteriophora suppresses antimicrobial peptide gene expression and factors related to ecdysone signaling. Sci Rep 2020; 10:12312. [PMID: 32704134 PMCID: PMC7378173 DOI: 10.1038/s41598-020-69306-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
Insect pathogens have adopted an array of mechanisms to subvert the immune pathways of their respective hosts. Suppression may occur directly at the level of host-pathogen interactions, for instance phagocytic capacity or phenoloxidase activation, or at the upstream signaling pathways that regulate these immune effectors. Insect pathogens of the family Baculoviridae, for example, are known to produce a UDP-glycosyltransferase (UGT) that negatively regulates ecdysone signaling. Normally, ecdysone positively regulates both molting and antimicrobial peptide production, so the inactivation of ecdysone by glycosylation results in a failure of host larvae to molt, and probably a reduced antimicrobial response. Here, we examine a putative ecdysteroid glycosyltransferase, Hba_07292 (Hb-ugt-1), which was previously identified in the hemolymph-activated transcriptome of the entomopathogenic nematode Heterorhabditis bacteriophora. Injection of recombinant Hb-ugt-1 (rHb-ugt-1) into Drosophila melanogaster flies resulted in diminished upregulation of antimicrobial peptides associated with both the Toll and Immune deficiency pathways. Ecdysone was implicated in this suppression by a reduction in Broad Complex expression and reduced pupation rates in r Hb-ugt-1-injected larvae. In addition to the finding that H. bacteriophora excreted-secreted products contain glycosyltransferase activity, these results demonstrate that Hb-ugt-1 is an immunosuppressive factor and that its activity likely involves the inactivation of ecdysone.
Collapse
|
8
|
Eliáš S, Hurychová J, Toubarro D, Frias J, Kunc M, Dobeš P, Simões N, Hyršl P. Bioactive Excreted/Secreted Products of Entomopathogenic Nematode Heterorhabditis bacteriophora Inhibit the Phenoloxidase Activity during the Infection. INSECTS 2020; 11:insects11060353. [PMID: 32516962 PMCID: PMC7349556 DOI: 10.3390/insects11060353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Entomopathogenic nematodes (EPNs) are efficient insect parasites, that are known for their mutualistic relationship with entomopathogenic bacteria and their use in biocontrol. EPNs produce bioactive molecules referred to as excreted/secreted products (ESPs), which have come to the forefront in recent years because of their role in the process of host invasion and the modulation of its immune response. In the present study, we confirmed the production of ESPs in the EPN Heterorhabditis bacteriophora, and investigated their role in the modulation of the phenoloxidase cascade, one of the key components of the insect immune system. ESPs were isolated from 14- and 21-day-old infective juveniles of H. bacteriophora, which were found to be more virulent than newly emerged nematodes, as was confirmed by mortality assays using Galleria mellonella larvae. The isolated ESPs were further purified and screened for the phenoloxidase-inhibiting activity. In these products, a 38 kDa fraction of peptides was identified as the main candidate source of phenoloxidase-inhibiting compounds. This fraction was further analyzed by mass spectrometry and the de novo sequencing approach. Six peptide sequences were identified in this active ESP fraction, including proteins involved in ubiquitination and the regulation of a Toll pathway, for which a role in the regulation of insect immune response has been proposed in previous studies.
Collapse
Affiliation(s)
- Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Jorge Frias
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| | - Nelson Simões
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus n° 13, 9500-321 Ponta Delgada, Portugal; (D.T.); (J.F.); (N.S.)
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; (S.E.); (J.H.); (M.K.)
- Correspondence: (P.D.); (P.H.); Tel.: +420-549-49-3419 (P.D.); +420-549-49-4510 (P.H.)
| |
Collapse
|
9
|
Kenney E, Hawdon JM, O'Halloran D, Eleftherianos I. Heterorhabditis bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus luminescens Through Suppression of the Imd Pathway. Front Immunol 2019; 10:2372. [PMID: 31636642 PMCID: PMC6787769 DOI: 10.3389/fimmu.2019.02372] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Upon entering the hemocoel of its insect host, the entomopathogenic nematode Heterorhabditis bacteriophora releases its symbiotic bacteria Photorhabdus luminescens, which is also a strong insect pathogen. P. luminescens is known to suppress the insect immune response independently following its release, but the nematode appears to enact its own immunosuppressive mechanisms during the earliest phases of an infection. H. bacteriophora was found to produce a unique set of excreted-secreted proteins in response to host hemolymph, and while basal secretions are immunogenic with regard to Diptericin expression through the Imd pathway, host-induced secretions suppress this expression to a level below that of controls in Drosophila melanogaster. This effect is consistent in adults, larvae, and isolated larval fat bodies, and the magnitude of suppression is dose-dependent. By reducing the expression of Diptericin, an antimicrobial peptide active against Gram-negative bacteria, the activated excreted-secreted products enable a more rapid propagation of P. luminescens that corresponds to more rapid host mortality. The identification and isolation of the specific proteins responsible for this suppression represents an exciting field of study with potential for enhancing the biocontrol of insect pests and treatment of diseases associated with excessive inflammation.
Collapse
Affiliation(s)
- Eric Kenney
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Damien O'Halloran
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States.,Institute for Neuroscience, Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
10
|
van Oers MM, Eilenberg J. Mechanisms Underlying the Transmission of Insect Pathogens. INSECTS 2019; 10:insects10070194. [PMID: 31269657 PMCID: PMC6681244 DOI: 10.3390/insects10070194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/01/2022]
Abstract
In this special issue the focus is on the factors and (molecular) mechanisms that determine the transmission efficiency of a variety of insect pathogens in a number of insect hosts. In this editorial, we summarize the main findings of the twelve papers in this special issue and conclude that much more needs to be learned for an in-depth understanding of pathogen transmission in field and cultured insect populations. Analyses of mutual interactions between pathogens or between endosymbionts and pathogens, aspects rather under-represented in the scientific literature, are described in a number of contributions to this special issue.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Jørgen Eilenberg
- University of Copenhagen, Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg C., Denmark
| |
Collapse
|
11
|
Chang DZ, Serra L, Lu D, Mortazavi A, Dillman AR. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog 2019; 15:e1007626. [PMID: 31042778 PMCID: PMC6513111 DOI: 10.1371/journal.ppat.1007626] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/13/2019] [Accepted: 02/07/2019] [Indexed: 11/26/2022] Open
Abstract
Parasitic helminths release molecular effectors into their hosts and these effectors can directly damage host tissue and modulate host immunity. Excreted/secreted proteins (ESPs) are one category of parasite molecular effectors that are critical to their success within the host. However, most studies of nematode ESPs rely on in vitro stimulation or culture conditions to collect the ESPs, operating under the assumption that in vitro conditions mimic actual in vivo infection. This assumption is rarely if ever validated. Entomopathogenic nematodes (EPNs) are lethal parasites of insects that produce and release toxins into their insect hosts and are a powerful model parasite system. We compared transcriptional profiles of individual Steinernema feltiae nematodes at different time points of activation under in vitro and in vivo conditions and found that some but not all time points during in vitro parasite activation have similar transcriptional profiles with nematodes from in vivo infections. These findings highlight the importance of experimental validation of ESP collection conditions. Additionally, we found that a suite of genes in the neuropeptide pathway were downregulated as nematodes activated and infection progressed in vivo, suggesting that these genes are involved in host-seeking behavior and are less important during active infection. We then characterized the ESPs of activated S. feltiae infective juveniles (IJs) using mass spectrometry and identified 266 proteins that are released by these nematodes. In comparing these ESPs with those previously identified in activated S. carpocapsae IJs, we identified a core set of 52 proteins that are conserved and present in the ESPs of activated IJs of both species. These core venom proteins include both tissue-damaging and immune-modulating proteins, suggesting that the ESPs of these parasites include both a core set of effectors as well as a specialized set, more adapted to the particular hosts they infect.
Collapse
Affiliation(s)
- Dennis Z. Chang
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Lorrayne Serra
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Dihong Lu
- Department of Nematology, University of California, Riverside, California, United States of America
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California, United States of America
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, California, United States of America
| |
Collapse
|
12
|
Aryal SK, Lu D, Le K, Allison L, Gerke C, Dillman AR. Sand crickets (Gryllus firmus) have low susceptibility to entomopathogenic nematodes and their pathogenic bacteria. J Invertebr Pathol 2018; 160:54-60. [PMID: 30528638 DOI: 10.1016/j.jip.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
Abstract
The entomopathogenic nematode, Steinernema scapterisci, a specialist parasite of crickets, has been successfully used to combat the southern mole cricket, Neoscapteriscus borellii, which is an invasive pest of turf grass. As an entomopathogenic nematode, S. scapterisci causes rapid death of the insects it infects and uses bacteria to facilitate its parasitism. However, our understanding of the relative contributions of the nematode, S. scapterisci, and its bacterial symbiont, Xenorhabdus innexi, to parasitism remains limited. Here we utilized the sand cricket, Gryllus firmus, as a model host to evaluate the contributions of the EPNs S. scapterisci and S. carpocapsae, as well as their symbiotic bacteria, X. innexi and X. nematophila, respectively, to the virulence of the nematode-bacterial complex. We found that G. firmus has reduced susceptibility to infection from both S. scapterisci and the closely related generalist parasite S. carpocapsae, but that S. scapterisci is much more virulent than S. carpocapsae. Further, we found that N. borellii has reduced susceptibility to X. nematophila, and that G. firmus has reduced susceptibility to X. nematophila, X. innexi, and Serratia marcescens, much more so than other insects that have been studied. We found that the reduced susceptibility of G. firmus to bacterial infection is dependent on development, with adults being less susceptible to infection than nymphs. Our data provide evidence that unlike other EPNs, the virulence of S. scapterisci to crickets is dependent on the nematode rather than the bacterial symbiont that it carries and we speculate that S. scapterisci may be evolving independence from X. innexi.
Collapse
Affiliation(s)
- Sudarshan K Aryal
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Dihong Lu
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Kathleen Le
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Lauren Allison
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Carter Gerke
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA
| | - Adler R Dillman
- Department of Nematology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Yadav S, Eleftherianos I. Prolonged Storage Increases Virulence of Steinernema Entomopathogenic Nematodes Toward Drosophila Larvae. J Parasitol 2018; 104:722-725. [PMID: 30088785 DOI: 10.1645/18-91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Entomopathogenic nematodes are excellent organisms for dissecting the molecular basis of parasitism and probing the insect innate immune system. The nematode parasite Steinernema carpocapsae is a potent pathogen of insects that has emerged recently as a model for parasitic infection and anti-nematode immune signaling and response. The nematodes are mutualistically associated with the bacteria Xenorhabdus nematophila, which are also pathogenic to insects. Separation of nematodes from their associated bacteria facilitates mechanistic studies focusing on the impact of the parasites without considering the contribution of their bacterial partners. An important aspect in insect infection experiments with entomopathogenic nematodes includes the storage duration of the parasites. Here we have infected larvae of the model insect Drosophila melanogaster with S. carpocapsae nematodes that had been stored for 3 wk or 3 mo. Survival data consistently revealed that infective juveniles with prolonged storage exhibit substantially increased virulence toward D. melanogaster larvae compared with those that had been stored for a shorter time, and the presence of mutualistic X. nematophila in the nematodes does not influence this result. Although the basis for this effect is currently unknown, these surprising findings indicate that prolonged nematode storage can markedly alter virulence. This is significant knowledge that should be taken into account in functional assays involving infection with parasitic nematodes. Future efforts will focus on the identification and characterization of the factors that might determine the interrelationship between prolonged storage and virulence in nematode parasites.
Collapse
Affiliation(s)
- Shruti Yadav
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, District of Columbia 20052
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 22nd Street NW, Washington, District of Columbia 20052
| |
Collapse
|