1
|
A Two-Phase Evolutionary Method to Train RBF Networks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article proposes a two-phase hybrid method to train RBF neural networks for classification and regression problems. During the first phase, a range for the critical parameters of the RBF network is estimated and in the second phase a genetic algorithm is incorporated to locate the best RBF neural network for the underlying problem. The method is compared against other training methods of RBF neural networks on a wide series of classification and regression problems from the relevant literature and the results are reported.
Collapse
|
2
|
Liu Q, Liu Y, Chen K, Wang L, Li Z, Ai Q, Ma L. Research on Channel Selection and Multi-Feature Fusion of EEG Signals for Mental Fatigue Detection. ENTROPY (BASEL, SWITZERLAND) 2021; 23:457. [PMID: 33924528 PMCID: PMC8069717 DOI: 10.3390/e23040457] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 11/16/2022]
Abstract
With the rapid development of modern social science and technology, the pace of life is getting faster, and brain fatigue has become a sub-health state that seriously affects the normal life of people. Electroencephalogram (EEG) signals reflect changes in the central nervous system. Using EEG signals to assess mental fatigue is a research hotspot in related fields. Most existing fatigue detection methods are time-consuming or don't achieve satisfactory results due to insufficient features extracted from EEG signals. In this paper, a 2-back task is designed to induce fatigue. The weight value of each channel under a single feature is calculated by ReliefF algorithm. The classification accuracy of each channel under the corresponding features is analyzed. The classification accuracy of each single channel is combined to perform weighted summation to obtain the weight value of each channel. The first half channels sorted in descending order based on the weight value is chosen as the common channels. Multi-features in frequency and time domains are extracted from the common channel data, and the sparse representation method is used to perform feature fusion to obtain sparse fused features. Finally, the SRDA classifier is used to detect the fatigue state. Experimental results show that the proposed methods in our work effectively reduce the number of channels for computation and also improve the mental fatigue detection accuracy.
Collapse
Affiliation(s)
| | | | - Kun Chen
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China; (Q.L.); (Y.L.); (L.W.); (Z.L.); (Q.A.); (L.M.)
| | | | | | | | | |
Collapse
|
3
|
Kamarajan C, Ardekani BA, Pandey AK, Chorlian DB, Kinreich S, Pandey G, Meyers JL, Zhang J, Kuang W, Stimus AT, Porjesz B. Random Forest Classification of Alcohol Use Disorder Using EEG Source Functional Connectivity, Neuropsychological Functioning, and Impulsivity Measures. Behav Sci (Basel) 2020; 10:bs10030062. [PMID: 32121585 PMCID: PMC7139327 DOI: 10.3390/bs10030062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
: Individuals with alcohol use disorder (AUD) manifest a variety of impairments that can be attributed to alterations in specific brain networks. The current study aims to identify features of EEG-based functional connectivity, neuropsychological performance, and impulsivity that can classify individuals with AUD (N = 30) from unaffected controls (CTL, N = 30) using random forest classification. The features included were: (i) EEG source functional connectivity (FC) of the default mode network (DMN) derived using eLORETA algorithm, (ii) neuropsychological scores from the Tower of London test (TOLT) and the visual span test (VST), and (iii) impulsivity factors from the Barratt impulsiveness scale (BIS). The random forest model achieved a classification accuracy of 80% and identified 29 FC connections (among 66 connections per frequency band), 3 neuropsychological variables from VST (total number of correctly performed trials in forward and backward sequences and average time for correct trials in forward sequence) and all four impulsivity scores (motor, non-planning, attentional, and total) as significantly contributing to classifying individuals as either AUD or CTL. Although there was a significant age difference between the groups, most of the top variables that contributed to the classification were not significantly correlated with age. The AUD group showed a predominant pattern of hyperconnectivity among 25 of 29 significant connections, indicating aberrant network functioning during resting state suggestive of neural hyperexcitability and impulsivity. Further, parahippocampal hyperconnectivity with other DMN regions was identified as a major hub region dysregulated in AUD (13 connections overall), possibly due to neural damage from chronic drinking, which may give rise to cognitive impairments, including memory deficits and blackouts. Furthermore, hypoconnectivity observed in four connections (prefrontal nodes connecting posterior right-hemispheric regions) may indicate a weaker or fractured prefrontal connectivity with other regions, which may be related to impaired higher cognitive functions. The AUD group also showed poorer memory performance on the VST task and increased impulsivity in all factors compared to controls. Features from all three domains had significant associations with one another. These results indicate that dysregulated neural connectivity across the DMN regions, especially relating to hyperconnected parahippocampal hub as well as hypoconnected prefrontal hub, may potentially represent neurophysiological biomarkers of AUD, while poor visual memory performance and heightened impulsivity may serve as cognitive-behavioral indices of AUD.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
- Correspondence: ; Tel.: +1-718-270-2913
| | - Babak A. Ardekani
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016, USA
| | - Ashwini K. Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Sivan Kinreich
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Gayathri Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Jian Zhang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Weipeng Kuang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Arthur T. Stimus
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (D.B.C.); (S.K.); (G.P.); (J.L.M.); (J.Z.); (W.K.); (A.T.S.); (B.P.)
| |
Collapse
|
4
|
Ramele R, Villar AJ, Santos JM. EEG Waveform Analysis of P300 ERP with Applications to Brain Computer Interfaces. Brain Sci 2018; 8:brainsci8110199. [PMID: 30453482 PMCID: PMC6266353 DOI: 10.3390/brainsci8110199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022] Open
Abstract
The Electroencephalography (EEG) is not just a mere clinical tool anymore. It has become the de-facto mobile, portable, non-invasive brain imaging sensor to harness brain information in real time. It is now being used to translate or decode brain signals, to diagnose diseases or to implement Brain Computer Interface (BCI) devices. The automatic decoding is mainly implemented by using quantitative algorithms to detect the cloaked information buried in the signal. However, clinical EEG is based intensively on waveforms and the structure of signal plots. Hence, the purpose of this work is to establish a bridge to fill this gap by reviewing and describing the procedures that have been used to detect patterns in the electroencephalographic waveforms, benchmarking them on a controlled pseudo-real dataset of a P300-Based BCI Speller and verifying their performance on a public dataset of a BCI Competition.
Collapse
Affiliation(s)
- Rodrigo Ramele
- Computer Engineering Department, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires 1441, Argentina.
| | - Ana Julia Villar
- Computer Engineering Department, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires 1441, Argentina.
| | - Juan Miguel Santos
- Computer Engineering Department, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires 1441, Argentina.
| |
Collapse
|