1
|
Lin R, Huang Z, Liu Y, Zhou Y. Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives. BIOSENSORS 2025; 15:191. [PMID: 40136988 PMCID: PMC11940481 DOI: 10.3390/bios15030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Cardiovascular diseases have long been a major challenge to human health, and the treatment differences caused by individual variability remain unresolved. In recent years, personalized cardiovascular drug therapy has attracted widespread attention. This paper reviews the strategies for achieving personalized cardiovascular drug therapy through traditional dynamic monitoring and multidimensional data integration and analysis. It focuses on key technologies for dynamic monitoring, dynamic monitoring based on individual differences, and multidimensional data integration and analysis. By systematically reviewing the relevant literature, the main challenges in current research and the proposed potential directions for future studies were summarized.
Collapse
Affiliation(s)
| | | | | | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau
| |
Collapse
|
2
|
Martins de Oliveira A, Matias Silva R, Dias da Silva A, Silva TA. Electroanalysis of Statin Drugs: A Review on the Electrochemical Sensor Architectures Ranging from Classical to Modern Systems. Crit Rev Anal Chem 2024:1-20. [PMID: 39499262 DOI: 10.1080/10408347.2024.2420820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
An overview of the latest advances in the design of electrochemical sensor architectures dedicated to the determination of drugs from the statin class is presented in this review. Statins are drugs widely consumed for cholesterol control, and their determination in different matrices through the application of electroanalysis is growing considering advantages such as operational simplicity, lower cost and ease of sample preparation. Within the context of statins, electrochemical sensor architectures can be subdivided into conventional/classical electrodes such as glassy carbon electrodes, carbon paste electrodes, pencil graphite electrodes, boron-doped diamond electrodes and metallic electrodes, and more modern electrode systems, including the screen-printed electrodes and 3D-printed electrodes. Thus, different aspects related to the preparation of these electrochemical sensors and analytical performance are presented, also reflecting advances in terms of designs of new architectures and possible improvements not previously reviewed. Analyzed samples, advantages and disadvantages of different implemented sensor's modification strategies and perspectives for the electroanalysis of statins are also included throughout the work.
Collapse
|
3
|
Aldakhil F, Alarfaj NA, Al-Tamimi SA, El-Tohamy MF. A Dual-Mode Spectrophotometric and Fluorescent Probe Based on Lignin-Derived Carbon Dots for the Detection of Atorvastatin Calcium in a Bulk Powder and a Commercial Product. J Fluoresc 2024:10.1007/s10895-024-03745-2. [PMID: 38814526 DOI: 10.1007/s10895-024-03745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
Recently, dual-mode techniques have garnered considerable attention and have been shown to be effective approaches for biomedical analysis and environmental monitoring. A novel and simple dual-mode spectrophotometric and fluorometric probe based on lignin-derived carbon dots (LCDs) was developed to detect atorvastatin calcium (ATS) in a bulk powder and its commercial product. The synthesized LCDs exhibit exceptional fluorescence characteristics and are highly soluble in water while maintaining reasonable stability. The average particle size of the LCDs was 3.42 ± 1.03 nm. The characterization of the produced LCDs indicated a structure resembling graphene oxide with the presence of several functional groups. The developed LCDs show a good fluorescence quantum yield of 32.2%. The fluorescence of the LCDs is quenched by ATS at an emission wavelength of 315 nm after excitation at 275 nm through dynamic and static quenching mechanisms. The optimal reaction conditions for the dual-mode reaction were a pH of 9 and 0.05 mL of the LCDs, which were measured after 3 min at 30 °C by spectrophotometry, followed by 7 min at 20 °C by fluorometric methods. According to the spectrophotometric results, the response of ATS was linear in the range of 4.0-100.0 µg/mL, while according to the fluorometric results, the dynamic range was 3.0-50.0 µg/mL. The limits of detection (LODs) and the limits of quantification (LOQs) were 0.97 µg/mL and 2.95 µg/mL for the fluorometric method, respectively. The nanoprobe effectively analyzed ATS in medication samples and yielded good results.
Collapse
Affiliation(s)
- Fatemah Aldakhil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Salma A Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia.
| |
Collapse
|
4
|
de Faria LV, do Nascimento SFL, Villafuerte LM, Semaan FS, Pacheco WF, Dornellas RM. 3D printed graphite-based electrode coupled with batch injection analysis: An affordable high-throughput strategy for atorvastatin determination. Talanta 2023; 265:124873. [PMID: 37390670 DOI: 10.1016/j.talanta.2023.124873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
This work integrated a lab-made conductive graphite/polylactic acid (Grp/PLA, 40:60% w/w) filament into a 3D pen to print customized electrodes (cylindrical design). Thermogravimetric analysis validated the incorporation of graphite into the PLA matrix, while Raman spectroscopy and scanning electron microscopy images indicated a graphitic structure with the presence of defects and highly porous, respectively. The electrochemical features of the 3D-printed Gpt/PLA electrode were systematically compared to that achieved using commercial carbon black/polylactic acid (CB/PLA, from Protopasta®) filament. The 3D printed Gpt/PLA electrode "in the native form" provided lower charge transfer resistance (Rct = 880 Ω) and a more kinetically favored reaction (K0 = 1.48 × 10-3 cm s-1) compared to the 3D printed CB/PLA electrode (chemically/electrochemically treated). Moreover, a method by batch injection analysis with amperometric detection (BIA-AD) was developed to determine atorvastatin (ATR) in pharmaceutical and water samples. Using the 3D printed Gpt/PLA electrode, a wider linear range (1-200 μmol L-1), sensitivity (3-times higher), and lower detection limit (LOD = 0.13 μmol L-1) were achieved when compared to the CB/PLA electrode. Repeatability studies (n = 15, RSD <7.3%) attested to the precision of the electrochemical measurements, and recovery percentages between 83 and 108% confirmed the accuracy of the method. Remarkably, this is the first time that ATR has been determined by the BIA-AD system and a low-cost 3D-printed device. This approach is promising to be implemented in research laboratories for quality control of pharmaceuticals and can also be useful for on-site environmental analysis.
Collapse
Affiliation(s)
- Lucas V de Faria
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| | - Suéllen F L do Nascimento
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Luana M Villafuerte
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Felipe S Semaan
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Wagner F Pacheco
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | - Rafael M Dornellas
- Departamento de Química Analítica, Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.
| |
Collapse
|
5
|
Munteanu IG, Grădinaru VR, Apetrei C. Development of a Chemically Modified Sensor Based on a Pentapeptide and Its Application for Sensitive Detection of Verbascoside in Extra Virgin Olive Oil. Int J Mol Sci 2022; 23:ijms232415704. [PMID: 36555346 PMCID: PMC9778896 DOI: 10.3390/ijms232415704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
In addition to their antioxidant and antimicrobial action in functional foods, beverages, and in some dermato-cosmetic products, olive phenolic compounds are also recognized for their role in the prevention of diabetes and inflammation, treatment of heart disease and, consequently, of the numerous chronic diseases mediated by the free radicals. In recent years, attention has increased, in particular, regarding one of the most important compound in extra virgin olive oil (EVOO) having glycosidic structure, namely verbocoside, due to the existence in the literature of numerous studies demonstrating its remarkable contribution to the prophylaxis and treatment of various disorders of the human body. The purpose of this study was the qualitative and quantitative determination of verbascoside in commercial EVOOs from different regions by means of a newly developed sensor based on a screen-printed carbon electrode (SPCE) modified with graphene oxide (GPHOX), on the surface of which a pentapeptide was immobilized by means of glutaraldehyde as cross-linking agent. The modified electrode surface was investigated using both Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) methods. This newly developed sensor has shown a high sensibility compared to the unmodified electrode, a low detection limit (LOD) of up to 9.38 × 10-8 M, and a wide linearity range between 0.1 µM and 10.55 µM. The applicability of the modified sensor was confirmed by detecting verbascoside in ten different EVOOs samples using the cyclic voltammetry (CV) method, with very good results. The validation of the electroanalytical method was performed by using the standard addition method with very good recoveries in the range of 97.48-103.77%.
Collapse
Affiliation(s)
- Irina Georgiana Munteanu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
| | | | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domneasca Street, 800008 Galaţi, Romania
- Correspondence: ; Tel.: +40-727-580-914
| |
Collapse
|
6
|
Choi YS, Cho HJ, Jung HJ. Atorvastatin inhibits the proliferation of MKN45-derived gastric cancer stem cells in a mevalonate pathway-independent manner. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:367-375. [PMID: 36039737 PMCID: PMC9437372 DOI: 10.4196/kjpp.2022.26.5.367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Gastric cancer stem cells (GCSCs) are a major cause of radioresistance and chemoresistance in gastric cancer (GC). Therefore, targeting GCSCs is regarded as a powerful strategy for the effective treatment of GC. Atorvastatin is a widely prescribed cholesterol-lowering drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate-limiting enzyme in the mevalonate pathway. The anticancer activity of atorvastatin, a repurposed drug, is being investigated; however, its therapeutic effect and molecular mechanism of action against GCSCs remain unknown. In this study, we evaluated the anticancer effects of atorvastatin on MKN45-derived GCSCs. Atorvastatin significantly inhibited the proliferative and tumorsphere-forming abilities of MKN45 GCSCs in a mevalonate pathway-independent manner. Atorvastatin induced cell cycle arrest at the G0/G1 phase and promoted apoptosis by activating the caspase cascade. Furthermore, atorvastatin exerted an antiproliferative effect against MKN45 GCSCs by inhibiting the expression of cancer stemness markers, such as CD133, CD44, integrin α6, aldehyde dehydrogenase 1A1, Oct4, Sox2, and Nanog, through the downregulation of β-catenin, signal transducer and activator of transcription 3, and protein kinase B activities. Additionally, the combined treatment of atorvastatin and sorafenib, a multi-kinase targeted anticancer drug, synergistically suppressed not only the proliferation and tumorsphere formation of MKN45 GCSCs but also the in vivo tumor growth in a chick chorioallantoic membrane model implanted with MKN45 GCSCs. These findings suggest that atorvastatin can therapeutically eliminate GCSCs.
Collapse
Affiliation(s)
- Ye Seul Choi
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| | - Hee Jeong Cho
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| | - Hye Jin Jung
- Department of Pharmaceutical Engineering and Biotechnology, Genome-Based BioIT Convergence Institute, Sun Moon University, Asan 31460, Korea
| |
Collapse
|
7
|
Bounegru AV, Apetrei C. Sensitive Detection of Hydroxytyrosol in Extra Virgin Olive Oils with a Novel Biosensor Based on Single-Walled Carbon Nanotubes and Tyrosinase. Int J Mol Sci 2022; 23:ijms23169132. [PMID: 36012400 PMCID: PMC9409382 DOI: 10.3390/ijms23169132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/18/2022] Open
Abstract
Hydroxytyrosol (HT) is an important marker for the authenticity and quality assessment of extra virgin olive oils (EVOO). The aim of the study was the qualitative and quantitative determination of hydroxytyrosol in commercial extra virgin olive oils of different origins and varieties using a newly developed biosensor based on a screen-printed electrode modified with single-layer carbon nanotubes and tyrosinase (SPE-SWCNT-Ty). The enzyme was immobilized on a carbon-based screen-printed electrode previously modified with single-layer carbon nanotubes (SPE-SWCNT-Ty) by the drop-and-dry method, followed by cross-linking with glutaraldehyde. The modified electrode surface was characterized by different methods, including electrochemical (cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS)) and spectrometric (Fourier transform infrared (FTIR) spectroscopy) methods. Cyclic voltammetry was used for the quantitative determination of HT, obtaining a detection limit of 3.49 × 10−8 M and a quantification limit of 1.0 × 10−7 M, with a wide linearity range (0.49–15.602 µM). The electrochemical performance of the SPE-SWCNT-Ty biosensor was compared with that of the modified SPE-SWCNT sensor, and the results showed increased selectivity and sensitivity of the biosensor due to the electrocatalytic activity of tyrosinase. The results obtained from the quantitative determination of HT showed that commercial EVOOs contain significant amounts of HT, proving the high quality of the finished products. The determination of the antiradical activity of HT was carried out spectrophotometrically using the free reagent galvinoxyl. The results showed that there is a very good correlation between the antiradical capacity of EVOOs, the voltammetric response and implicitly the increased concentration of HT. SPE-SWCNT-Ty has multiple advantages such as sensitivity, selectivity, feasibility and low cost and could be used in routine analysis for quality control of food products such as vegetable oils.
Collapse
|
8
|
Munteanu IG, Apetrei C. Assessment of the Antioxidant Activity of Catechin in Nutraceuticals: Comparison between a Newly Developed Electrochemical Method and Spectrophotometric Methods. Int J Mol Sci 2022; 23:ijms23158110. [PMID: 35897695 PMCID: PMC9329966 DOI: 10.3390/ijms23158110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of antioxidants in different foodstuffs has become an active area of research, which has led to many recently developed antioxidant assays. Many antioxidants exhibit inherent electroactivity, and, therefore, the use of electrochemical methods could be a viable approach for evaluating the overall antioxidant activity of a matrix of nutraceuticals without the need for adding reactive species. Green tea is believed to be a healthy beverage due to a number of therapeutic benefits. Catechin, one of its constituents, is an important antioxidant and possesses free radical scavenging abilities. The present paper describes the electrochemical properties of three screen-printed electrodes (SPEs), the first one based on carbon nanotubes (CNTs), the second one based on gold nanoparticles (GNPs) and the third one based on carbon nanotubes and gold nanoparticles (CNTs-GNPs). All three electrodes were modified with the laccase (Lac) enzyme, using glutaraldehyde as a cross-linking agent between the amino groups on the laccase and aldehyde groups of the reticulation agent. As this enzyme is a thermostable catalyst, the performance of the biosensors has been greatly improved. Electro-oxidative properties of catechin were investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), and these demonstrated that the association of CNTs with GNPs significantly improved the sensitivity and selectivity of the biosensor. The corresponding limit of detection (LOD) was estimated to be 5.6 × 10−8 M catechin at the CNT-Lac/SPE, 1.3 × 10−7 M at the GNP-Lac/SPE and 4.9 × 10−8 M at the CNT-GNP-Lac/SPE. The biosensors were subjected to nutraceutical formulations containing green tea in order to study their catechin content, using CNT-GNP-Lac/SPE, through DPV. Using a paired t-test, the catechin content estimated was in agreement with the manufacturer’s specification. In addition, the relationship between the CNT-GNP-Lac/SPE response at a specific potential and the antioxidant activity of nutraceuticals, as determined by conventional spectrophotometric methods (DPPH, galvinoxyl and ABTS), is discussed in the context of developing a fast biosensor for the relative antioxidant activity quantification.
Collapse
|
9
|
Editorial for Special Issue “Perspectives and Challenges in Doctoral Research—Selected Papers from the 9th Edition of the Scientific Conference of the Doctoral Schools from the “Dunărea de Jos”. INVENTIONS 2022. [DOI: 10.3390/inventions7020033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This Editorial is dedicated to the 9th edition of the Scientific Conference organized by the Doctoral Schools of “Dunărea de Jos” University of Galati (SCDS-UDJG), which was organized in June 2021 in Galati (Romania) [...]
Collapse
|
10
|
Graphene sheet-based electrochemical sensor with cationic surfactant for sensitive detection of atorvastatin. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|