1
|
Li CJ, Zhai RR, Zhu XY, Guo ZF, Yang H. Discovery of effective combination from Renshen-Fuzi herbal pair against heart failure by spectrum-effect relationship analysis and zebrafish models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116832. [PMID: 37352946 DOI: 10.1016/j.jep.2023.116832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herbal pair Ginseng Radix et Rhizoma (roots and rhizomes of Panax ginseng C.A. Mey, Renshen in Chinese) and Aconiti Lateralis Radix Praeparata (lateral roots of Aconitum carmichaelii Debeaux, Fuzi in Chinese), composition of two traditional Chinese medicinal herbs, has been widely used in traditional Chinese medicine formula, in which Shenfu decoction has been used clinically in China for the treatment of heart failure at present. AIM OF THE STUDY Although the ginsenosides and aconite alkaloids have been proven as the essential bioactive components in Renshen-Fuzi herbal pair, the exact composition of effective components to combat heart failure are still unclear. Therefore, spectrum-effect relationship analysis was performed to reveal its effective combination for anti-heart failure effect. MATERIALS AND METHODS Firstly, the chemical constituents of Renshen-Fuzi herbal pair were identified using ultra high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). The 39 major compounds in Renshen-Fuzi with five different compatibility ratios were simultaneously quantified using ultra high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-QQQ MS/MS). Subsequently, zebrafish models induced by verapamil hydrochloride were constructed and four heart failure-related indexes were selected for pharmacodynamic evaluation of Renshen-Fuzi. To analyze the spectrum-effect relationships, partial least squares regression (PLSR) models were established among the contents of 39 compounds in Renshen-Fuzi with each pharmacodynamic index. According to the contribution of each compound to the whole efficacy, 12 compounds were finally screened out as the effective combination. RESULTS A total of 157 chemical compounds of Renshen-Fuzi herbal pair were identified, in which 39 components were simultaneously determined. The pharmacological effects indicated that Renshen-Fuzi with 1:2 ratio exhibited the best effect based on zebrafish model, which could improve cardiac output and blood flow velocity and inhibit pericardial enlargement and venous blood stasis significantly. A combination of 9 ginsenosides and 3 aconite alkaloids based on a component-efficacy modeling by PLSR was screened, and exerted approximately equivalent pharmacological effects compared with Renshen-Fuzi herbal pair. CONCLUSIONS Our findings elucidated the effective combination of Renshen-Fuzi herbal pair that has been used in clinic for the treatment of heart failure, which could also promote the pharmacological research and quality control of their formula such as Shenfu decoction.
Collapse
Affiliation(s)
- Chu-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Rong-Rong Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Fan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
2
|
Dong R, Zhang Y, Chen S, Wang H, Hu K, Zhao H, Tian Q, Zeng K, Wang S, Han L. Identification of key pharmacodynamic markers of American ginseng against heart failure based on metabolomics and zebrafish model. Front Pharmacol 2022; 13:909084. [PMID: 36313322 PMCID: PMC9614665 DOI: 10.3389/fphar.2022.909084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: American ginseng (Panax quinquefolium L., AG) is a traditional Chinese medicine with multiple cardiovascular protective properties. Many bioactive components have been discovered in AG over these years. However, the understanding of these key pharmacodynamic components of activity against heart failure is insufficient. Methods: A heart failure model was established using AB line wild-type zebrafish (Danio rerio) to evaluate the anti-heart failure activity of AG. Untargeted metabolomics analysis based on ultra-high performance liquid chromatography-quadrupole electrostatic field orbitrap-mass spectrometry technology (UHPLC-QE-Orbitrap-MS) was performed to screen differential components from AG samples. The potential active components were verified using the zebrafish model. Simultaneously, network pharmacology and molecular docking techniques were used to predict the possible mechanism. Finally, the key targets of six key pharmacodynamic components were verified in zebrafish using quantitative real-time-polymerase chain reaction (Q-PCR) techniques. Results: The heart failure model was successfully established in 48 h of post-fertilization (hpf) zebrafish larvae by treating with verapamil hydrochloride. The zebrafish assay showed that the anti-heart failure effects of AG varied with producing regions. The result of the herbal metabolomic analysis based on UHPLC-QE-Orbitrap-MS indicated that ginsenoside Rg3, ginsenoside Rg5, ginsenoside Rg6, malic acid, quinic acid, L-argininosuccinic acid, 3-methyl-3-butenyl-apinosyl (1→6) glucoside, pseudoginsenoside F11, and annonaine were differential components, which might be responsible for variation in efficacy. Further analysis using zebrafish models, network pharmacology, and Q-PCR techniques showed that ginsenoside Rg3, ginsenoside Rg5, ginsenoside Rg6, malic acid, quinic acid, and pseudoginsenoside F11 were the pharmacodynamic markers (P-markers) responsible for anti-heart failure. Conclusion: We have rapidly identified the P-markers against heart failure in AG using the zebrafish model and metabolomics technology. These P-markers may provide new reference standards for quality control and new drug development of AG.
Collapse
Affiliation(s)
- Rong Dong
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yougang Zhang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, China
| | - Shanjun Chen
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huan Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kaiqing Hu
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huanxin Zhao
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingping Tian
- School of Pharmaceutical Science of Shanxi Medical University, Taiyuan, China
| | - Kewu Zeng
- School of Pharmaceutical Science of Peking University, Beijing, China
| | - Songsong Wang
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Songsong Wang, ; Liwen Han,
| | - Liwen Han
- School of Pharmacy and Pharmaceutical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Songsong Wang, ; Liwen Han,
| |
Collapse
|
3
|
Dias ML, Paranhos BA, Ferreira JRP, Fonseca RJC, Batista CMP, Martins-Santos R, de Andrade CBV, Faccioli LAP, da Silva AC, Nogueira FCS, Domont GB, Dos Santos Goldenberg RC. Improving hemocompatibility of decellularized liver scaffold using Custodiol solution. BIOMATERIALS ADVANCES 2022; 133:112642. [PMID: 35034821 DOI: 10.1016/j.msec.2022.112642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
Organ decellularization is one of the most promising approaches of tissue engineering to overcome the shortage of organs available for transplantation. However, there are key hurdles that still hinder its clinical application, and the lack of hemocompatibility of decellularized materials is a central one. In this work, we demonstrate that Custodiol (HTK solution), a common solution used in organ transplantation, increased the hemocompatibility of acellular scaffolds obtained from rat livers. We showed that Custodiol inhibited ex vivo, in vitro, and in vivo blood coagulation to such extent that allowed successful transplantation of whole-liver scaffolds into recipient animals. Scaffolds previously perfused with Custodiol showed no signs of platelet aggregation and maintained in vitro and in vivo cellular compatibility. Proteomic analysis revealed that proteins related to platelet aggregation were reduced in Custodiol samples while control samples were enriched with thrombogenicity-related proteins. We also identified distinct components that could potentially be involved with this anti-thrombogenic effect and thus require further investigation. Therefore, Custodiol perfusion emerge as a promising strategy to reduce the thrombogenicity of decellularized biomaterials and could benefit several applications of whole-organ tissue engineering.
Collapse
Affiliation(s)
- Marlon Lemos Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil
| | - Bruno Andrade Paranhos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil
| | - Juliana Ribeiro Pinheiro Ferreira
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Brasil
| | - Roberto José Castro Fonseca
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil; Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Cíntia Marina Paz Batista
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ricardo Martins-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil
| | - Cherley Borba Vieira de Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, RJ, Brasil
| | - Lanuza Alaby Pinheiro Faccioli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | - Gilberto Barbosa Domont
- Laboratório de Proteômica /LADETEC, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brasil.
| |
Collapse
|