1
|
Hua JPY, Abram SV, Loewy RL, Stuart B, Fryer SL, Vinogradov S, Mathalon DH. Brain Age Gap in Early Illness Schizophrenia and the Clinical High-Risk Syndrome: Associations With Experiential Negative Symptoms and Conversion to Psychosis. Schizophr Bull 2024; 50:1159-1170. [PMID: 38815987 PMCID: PMC11349027 DOI: 10.1093/schbul/sbae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
BACKGROUND AND HYPOTHESIS Brain development/aging is not uniform across individuals, spawning efforts to characterize brain age from a biological perspective to model the effects of disease and maladaptive life processes on the brain. The brain age gap represents the discrepancy between estimated brain biological age and chronological age (in this case, based on structural magnetic resonance imaging, MRI). Structural MRI studies report an increased brain age gap (biological age > chronological age) in schizophrenia, with a greater brain age gap related to greater negative symptom severity. Less is known regarding the nature of this gap early in schizophrenia (ESZ), if this gap represents a psychosis conversion biomarker in clinical high-risk (CHR-P) individuals, and how altered brain development and/or aging map onto specific symptom facets. STUDY DESIGN Using structural MRI, we compared the brain age gap among CHR-P (n = 51), ESZ (n = 78), and unaffected comparison participants (UCP; n = 90), and examined associations with CHR-P psychosis conversion (CHR-P converters n = 10; CHR-P non-converters; n = 23) and positive and negative symptoms. STUDY RESULTS ESZ showed a greater brain age gap relative to UCP and CHR-P (Ps < .010). CHR-P individuals who converted to psychosis showed a greater brain age gap (P = .043) relative to CHR-P non-converters. A larger brain age gap in ESZ was associated with increased experiential (P = .008), but not expressive negative symptom severity. CONCLUSIONS Consistent with schizophrenia pathophysiological models positing abnormal brain maturation, results suggest abnormal brain development is present early in psychosis. An increased brain age gap may be especially relevant to motivational and functional deficits in schizophrenia.
Collapse
Affiliation(s)
- Jessica P Y Hua
- Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco VA Medical Center, University of California, San Francisco, CA, USA
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Samantha V Abram
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rachel L Loewy
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Stuart
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Susanna L Fryer
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco VA Health Care System, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Wang X, Xia Y, Yan R, Wang H, Sun H, Huang Y, Hua L, Tang H, Yao Z, Lu Q. The relationship between disrupted anhedonia-related circuitry and suicidal ideation in major depressive disorder: A network-based analysis. Neuroimage Clin 2023; 40:103512. [PMID: 37757712 PMCID: PMC10539666 DOI: 10.1016/j.nicl.2023.103512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Several epidemiological studies and psychological models have suggested that major depressive disorder (MDD) with anhedonia is associated with suicidal ideation (SI). However, little is known about whether the functional network pattern and intrinsic topologically disrupted in patients with anhedonia are related to SI. METHODS The resting-fMRI by applying network-based statistic (NBS) and graph-theory analyses was estimated in 273 patients with MDD (144 high anhedonia [HA], 129 low anhedonia [LA]) and 150 healthy controls. In addition, we quantified the SI scores of each patient. Finally, the mediation analysis assessed whether anhedonia symptoms could mediate the relationship between anhedonia-related network metrics and SI. RESULT The NBS analysis demonstrated that individuals with HA have a single abnormally increased functional connectivity component in a frontal-limbic circuit (termed the "anhedonia-related network", including the frontal cortex, striatum, anterior cingulate cortex and amygdala). The graph-theory analysis demonstrated that the anhedonia-related network showed a significantly disrupted topological organization (lower gamma and lambda), which the small-world property trend randomized. Furthermore, the anhedonia symptoms could mediate the relationship between the anhedonia-related network metrics (the mean functional connectivity values, the area under the curves values of gamma and nodal local efficiency in nucleus accumbens) and SI. CONCLUSIONS We found that disruption of the reward-related network in MDD leads to SI through anhedonia symptoms. These findings show the abnormal topological construction of functional brain network organization in anhedonia, shedding light on the neurological processes underlying SI in MDD patients with anhedonia symptoms.
Collapse
Affiliation(s)
- Xiaoqin Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Yi Xia
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Rui Yan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Huan Wang
- School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing 210096, China
| | - Hao Sun
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Yinghong Huang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China
| | - Lingling Hua
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Hao Tang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Zhijian Yao
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing 210093, China; School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing 210096, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing 210096, China.
| |
Collapse
|