1
|
Sanmiguel Serpa LC, de Visschere P, Speeckaert M, Pullens P. The Influence of Anthropometric Factors on Renal mpMRI: Insights From Regional Analysis. J Magn Reson Imaging 2025; 61:2157-2168. [PMID: 39466028 DOI: 10.1002/jmri.29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Multiparametric MRI (mpMRI) provides detailed insights into renal function, but the impact of anthropometric factors on renal imaging is not fully understood. PURPOSE To investigate regional correlations between mpMRI parameters and age, body mass index (BMI), and body surface area (BSA). STUDY TYPE Prospective, cross-sectional observational study. POPULATION Twenty-nine healthy volunteers (44.5 ± 18.3 years, 18 females) without a history of renal disease. FIELD STRENGTH/SEQUENCE 3-T, pseudo-continuous arterial spin labeling, multi-echo gradient-recalled echo, diffusion-weighted imaging, T1 and T2 mapping. ASSESSMENT Bilateral kidneys were segmented into nine concentric layers (outer cortex to inner regions) and nine equiangular sections (lower to upper pole). Key parameters (renal blood flow [RBF],R 2 * , apparent diffusion coefficient [ADC], T1 and T2 maps) were correlated with age, BMI, and BSA. Differences in parameters between age and BMI groups were also evaluated. STATISTICAL TESTS Spearman correlation, Mann-Whitney U test, and rank-biserial correlation coefficient for effect size. A P-value <0.05 was considered statistically significant. RESULTS RBF correlated negatively with age in all regions and BMI in inner layers and lower pole. ADC negatively correlated with BMI (significance was not reached in layers 2, 7, 8; P-value = 0.06-0.12) and BSA in layers 1-7. T1 negatively correlated with age in inner regions and lower medial pole. Significant positive correlations were found between age andR 2 * (outermost layer, upper pole), age and T2 (inner and cranial-caudal regions), as well as BMI and T2 (except upper pole; P-value = 0.06). Significant differences between age groups were observed for RBF (all regions),R 2 * (outermost and second innermost layers, central lateral region), T1 (innermost layer), and T2 (upper medial pole). Between BMI groups, ADC (middle layers, upper medial pole) and T2 (outermost and inner layers, lower pole to lateral region) differed significantly. DATA CONCLUSION Intrarenal variance of mpMRI parameters correlated with age, BMI, and BSA. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Luis Carlos Sanmiguel Serpa
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Ghent Institute of Functional and Metabolic Imaging (GIFMI), Ghent University, Ghent, Belgium
| | - Pieter de Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Marijn Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| | - Pim Pullens
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
- Ghent Institute of Functional and Metabolic Imaging (GIFMI), Ghent University, Ghent, Belgium
- IBiTech - Medisip, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Hua C, Zhuang Y, Wang M, Cai T, Xu B, Hao S, Fang X, Wang L, Zhou L. Comparative Study Between Variable Flip Angle and Modified Look-Locker Inversion Recovery for Evaluating Renal Interstitial Fibrosis. J Magn Reson Imaging 2025; 61:2197-2209. [PMID: 39282933 DOI: 10.1002/jmri.29611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Variable flip angle (VFA) and modified Look-Locker inversion recovery (MOLLI) are frequently used for noninvasive evaluation of renal interstitial fibrosis (IF) in chronic kidney disease (CKD). However, controversy remains over which method is preferred. PURPOSE To compare the diagnostic efficacy of VFA and MOLLI for T1 mapping in evaluating renal IF. STUDY TYPE Prospective. SUBJECTS Fifty-one participants with CKD (CKD stage 1-5, 35 males) and 18 healthy volunteers (eight males). FIELD STRENGTH/SEQUENCE 3.0 T, three-dimensional gradient echo sequence for B1+ VFA, and two-dimensional gradient echo sequence for MOLLI. ASSESSMENT Image quality was assessed on a five-point scale. Cortex and medulla T1 values (cT1 and mT1), corticomedullary T1 value difference (ΔT1, medulla - cortex), and corticomedullary T1 value ratio (ratio T1, cortex:medulla) were compared between VFA and MOLLI as well as between IF grade (0-4) based on biopsy. STATISTICAL TESTS Intraclass correlation coefficient, Bland-Altman analysis, analysis of variance, Kruskal-Wallis test, correlation analysis, and receiver operating characteristics analysis with the area under the curve (AUC). P-value <0.05 was considered significant. RESULTS MOLLI provided significantly better image quality compared to VFA. cT1 and mT1 values significantly differed between VFA and MOLLI (cT1-VFA: 1771.4 ± 139.4 msec vs. cT1-MOLLI: 1729.9 ± 132.1 msec; mT1-VFA: 2076.0 [interquartile range (IQR): 2045.9-2129.9] msec vs. mT1-MOLLI: 2039.2 [IQR: 1997.8-2071.6] msec). ΔT1 and ratio T1 values were not different between VFA and MOLLI (ΔT1: 300.8 ± 71.4 vs. 306.0 ± 78.4, respectively, P = 0.33 and ratio T1: 0.85 ± 0.038 vs. 0.85 ± 0.041, respectively, P = 0.064). No difference was observed between T1 variables and T1 mapping methods in diagnosing IF. DATA CONCLUSION ΔT1 and ratio T1 were not different between VFA and MOLLI. Both VFA and MOLLI are effective for noninvasive assessment of renal IF. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Chenchen Hua
- Department of Diagnostic Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yi Zhuang
- Department of Diagnostic Radiology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Miaoyan Wang
- Department of Diagnostic Radiology, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, China
| | - Ting Cai
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Bin Xu
- Department of Diagnostic Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shaowei Hao
- Siemens Healthineers Digital Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Xiangming Fang
- Department of Diagnostic Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Liang Wang
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Leting Zhou
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Liu J, Chen H, Tian C, Fu L, Nie L, Wang R, Zeng X. Renal ectopic fat deposition and hemodynamics in type 2 diabetes mellitus assessment with magnetic resonance imaging. Insights Imaging 2025; 16:93. [PMID: 40287889 PMCID: PMC12034603 DOI: 10.1186/s13244-025-01971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVES To assess renal perfusion and ectopic fat deposition in patients with type 2 diabetes mellitus (T2DM), and to evaluate the effects of ectopic fat deposition on renal hemodynamics. METHODS All participants underwent quantitative magnetic resonance imaging (MRI) to measure the cortical and medullary renal blood flow (RBF) and proton density fat fraction (PDFF). Patients with T2DM were classified into three groups according to the estimated glomerular filtration rate (mL/min/1.73 m2). One-way analysis of variance was used to assess differences among groups. Pearson's correlation coefficient was used to analyze correlations. Additionally, a receiver operating characteristic (ROC) curve was constructed to assess diagnostic performance. RESULTS Renal PDFF values of the renal cortex and medulla, as well as perirenal fat thickness, were significantly different among the four groups: healthy control < T2DM < diabetic kidney disease (DKD) I-II < DKD III-IV. Additionally, significant differences in cortical and medullary RBF values were observed among the four groups: healthy control > T2DM > DKD I-II > DKD III-IV. A significant negative correlation was observed between renal PDFF and RBF values. Medullary RBF values demonstrated the best performance in discriminating T2DM from DKD with the largest area under the ROC curve (AUC) of 0.971. The cortical PDFF achieved the largest AUC (0.961) for distinguishing DKD I-II from DKD III-IV. CONCLUSIONS Quantitative MRI effectively evaluates renal perfusion and ectopic fat deposition in T2DM patients, aiding in assessing kidney function and disease progression. Additionally, renal ectopic fat deposition may be an important risk factor for renal hemodynamic injury. CRITICAL RELEVANCE STATEMENT Quantitative MRI could serve as a radiation-free imaging modality for assessing renal perfusion and ectopic fat deposition, which may be an important risk factor for DKD progression. KEY POINTS Quantitative MRI can be used to assess kidney function and monitor disease progression in patients with T2DM. In patients with T2DM, decreased renal perfusion, increased renal ectopic fat deposition, and kidney damage were significantly correlated. Renal ectopic fat deposition may be an important risk factor for renal hemodynamic injury.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, No. 2870, Huaxi Avenue South, Guiyang, 550025, Guizhou, China
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Hengzhi Chen
- Department of Graduate School, Zunyi Medical University, Guizhou, Zunyi, China
| | - Chong Tian
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Liwei Fu
- Department of Graduate School, Zunyi Medical University, Guizhou, Zunyi, China
| | - Lisha Nie
- GE HealthCare MR Research, Beijing, China
| | - Rongpin Wang
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China
| | - Xianchun Zeng
- Department of Radiology, International Exemplary Cooperation Base of Precision Imaging for Diagnosis and Treatment, Guizhou Provincial People's Hospital, No. 83, Zhongshan Dong Road, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
4
|
Chen X, Ge C, Zhang Y, Ma Y, Zhang Y, Li B, Chu Z, Ji Q. Evaluation of Early Renal Changes in Type 2 Diabetes Mellitus Using Multiparametric MR Imaging. Magn Reson Med Sci 2024:mp.2023-0148. [PMID: 39370295 DOI: 10.2463/mrms.mp.2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
PURPOSE To evaluate the clinical value of early renal changes in type 2 diabetes mellitus (T2DM) using multiparameter MRI. METHODS The study included 41 diabetics (normoalbuminuria: n = 23; microalbuminuria: n = 18) and 30 healthy controls. All subjects underwent intravoxel incoherent motion diffusion-weighted imaging (IVIM), blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) examinations. One-way analysis of variance was used to compare MRI parameters among the three groups. Pearson correlation analysis was used to evaluate the relationship between MRI parameters and estimated glomerular filtration rate (eGFR) and albumin-creatinine ratio (ACR). Receiver operating characteristic analysis was performed to assess the diagnostic performance. RESULTS There were statistical differences in cortical D, D*, f, renal blood flow (RBF) and medulla D, D*, f, R2* among the three groups (P < 0.05). The cortical or medullary D, cortical f, and RBF were significantly positively correlated with eGFR (all P < 0.01). The cortical or medullary D, D*, f, cortical RBF were negatively correlated with ACR (all P < 0.05).To evaluate early kidney changes and degree of diabetes, cortical combined D and RBF (AUC [area under the curve] = 0.796 and 0.947, respectively) was better than single D or RBF (all P > 0.05); medullary combined D and R2* (AUC = 0.899 and 0.923, respectively) was better than single D or R2* (all P > 0.05), except single D (P = 0.005) in differentiating normoalbuminuria group from control group. CONCLUSION The early changes of renal diffusion and perfusion, oxygenation level, and blood flow in T2DM could be evaluated noninvasively and quantitatively using IVIM, BOLD and ASL. Renal medullary combined IVIM-derived D and BOLD-derived R2* and cortical combined IVIM-derived D and ASL-derived RBF were better for evaluating early renal changes in T2DM.
Collapse
Affiliation(s)
- Xinyi Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Chao Ge
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Yuling Zhang
- Department of Radiology, Traditional Chinese Medicine Hospital of Gaoling District, Xi'an, Shaanxi, China
| | - Yajie Ma
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuling Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Bei Li
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiqiang Chu
- Department of Nephrology, Tianjin Fourth Central Hospital, Tianjin, China
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
5
|
Zhou H, Si Y, Yang L, Wang Y, Xiao Y, Tang Y, Qin W. The clinical and pathological evaluation of patients with immunoglobulin A nephropathy by diffusion tensor imaging and intravoxel incoherent motion diffusion-weighted imaging. Br J Radiol 2024; 97:1577-1587. [PMID: 39073891 PMCID: PMC11332673 DOI: 10.1093/bjr/tqae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES To explore the efficacy of diffuse magnetic resonance imaging (MRI) for identifying clinicopathological changes in immunoglobulin A nephropathy (IgAN) patients. METHODS The study enrolled IgAN patients and healthy volunteers. IgAN patients were divided into Group 1 [estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m2], Group 2 (60 ≤ eGFR < 90 mL/min/1.73 m2), and Group 3 (eGFR < 60 mL/min/1.73 m2). Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and diffusion tensor imaging (DTI) were performed via 3.0 T magnetic resonance. Diffuse MRI, clinical, and pathological indicators were collected and analysed. P < .05 was considered statistically significant. RESULTS Forty-six IgAN patients and twenty-seven volunteers were enrolled. The apparent diffusion coefficient, diffusion coefficient (D), perfusion fraction (f), and fractional anisotropy (FA) were significantly different among IgAN subgroups and controls. These parameters were positively correlated with eGFR and negatively with creatinine, and inversely correlated with glomerular sclerosis, interstitial fibrosis, and tubular atrophy (all P < .05). They had significantly high area under the curve (AUC) for distinguishing IgAN patients from controls, while FA had the highest AUC in identifying Group 1 IgAN patients from volunteers. CONCLUSIONS DTI and IVIM-DWI had the advantage of evaluating clinical and pathological changes in IgAN patients. DTI was superior at distinguishing early IgAN patients and might be a noninvasive marker for screening early IgAN patients from healthy individuals. ADVANCES IN KNOWLEDGE DTI and IVIM-DWI could evaluate clinical and pathological changes and correlated with Oxford classification in IgAN patients. They could also identify IgAN patients from healthy populations, while DTI had superiority in differentiating early IgAN patients.
Collapse
Affiliation(s)
- Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Si
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ling Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yitian Xiao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
6
|
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive Assessment of Diabetic Kidney Disease With MRI: Hype or Hope? J Magn Reson Imaging 2024; 59:1494-1513. [PMID: 37675919 DOI: 10.1002/jmri.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
7
|
Roccatello D, Lan HY, Sciascia S, Sethi S, Fornoni A, Glassock R. From inflammation to renal fibrosis: A one-way road in autoimmunity? Autoimmun Rev 2024; 23:103466. [PMID: 37848157 DOI: 10.1016/j.autrev.2023.103466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Renal fibrosis is now recognized as a main determinant of renal pathology to include chronic kidney disease. Deposition of pathological matrix in the walls of glomerular capillaries, the interstitial space, and around arterioles predicts and contributes to the functional demise of the nephron and its surrounding vasculature. The recent identification of the major cell populations of fibroblast precursors in the kidney interstitium such as pericytes and tissue-resident mesenchymal stem cells, or bone-marrow-derived macrophages, and in the glomerulus such as podocytes, parietal epithelial and mesangial cells, has enabled the study of the fibrogenic process thought the lens of involved immunological pathways. Besides, a growing body of evidence is supporting the role of the lymphatic system in modulating the immunological response potentially leading to inflammation and ultimately renal damage. These notions have moved our understanding of renal fibrosis to be recognized as a clinical entity and new main player in autoimmunity, impacting directly the management of patients.
Collapse
Affiliation(s)
- Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy.
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases,Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Richard Glassock
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Raut SS, Acharya S, Deolikar V, Mahajan S. Navigating the Frontier: Emerging Techniques for Detecting Microvascular Complications in Type 2 Diabetes Mellitus: A Comprehensive Review. Cureus 2024; 16:e53279. [PMID: 38435878 PMCID: PMC10905308 DOI: 10.7759/cureus.53279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
This review comprehensively explores emerging techniques for detecting microvascular complications in Type 2 Diabetes Mellitus (T2DM), addressing the critical need for advancements in early detection and management. As T2DM continues to rise globally, microvascular complications, including retinopathy, nephropathy, and neuropathy, contribute significantly to the morbidity and mortality associated with the condition. The review synthesizes key findings, revealing various emerging technologies, from advanced imaging modalities to genomic and proteomic approaches. It underscores the potential for personalized medicine, emphasizing the importance of tailoring diagnostic strategies to individual patient profiles. Challenges, including the lack of standardized criteria and issues related to patient adherence, highlight the necessity for collaborative efforts. The conclusion issues a call to action, advocating for enhanced collaboration, increased research investment, patient empowerment through education, and seamless integration of emerging diagnostic techniques into routine clinical care. The review envisions a transformative shift in detecting and managing microvascular complications in T2DM, ultimately improving patient outcomes and contributing to a healthier future for individuals affected by this prevalent metabolic disorder.
Collapse
Affiliation(s)
- Sarang S Raut
- General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sourya Acharya
- General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Vinit Deolikar
- General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Satish Mahajan
- General Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
9
|
Samaan E, Ramadan NM, Abdulaziz HMM, Ibrahim D, El-Sherbiny M, ElBayar R, Ghattas Y, Abdlmalek J, Bayali O, Elhusseini Y, Maghrabia A, El-Gamal R. DPP-4i versus SGLT2i as modulators of PHD3/HIF-2α pathway in the diabetic kidney. Biomed Pharmacother 2023; 167:115629. [PMID: 37804810 DOI: 10.1016/j.biopha.2023.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
RATIONALE Renal hypoxia is one of the currently highlighted pathophysiologic mechanisms of diabetic nephropathy (DN). Both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α are major regulators of renal adaptive responses to hypoxia. OBJECTIVES This study aims to compare the effects of vildagliptin (a dipeptidyl peptidase-IV inhibitor, DPP-4i) and empagliflozin (a sodium-glucose cotransporter 2 inhibitor, SGLT2i) on the differential expression of renal HIF-1α/2α. Tissue expression of prolylhydroxylase 3 (PHD3), a key regulator of HIF-2α stability, was also highlighted in a diabetic nephropathy rat model. Type 1 diabetes mellitus was induced and diabetic rats were treated with either Vildagliptin or Empagliflozin (10 mg/kg/d each) for 12 weeks. Improvements in the kidney functional and histopathological parameters were addressed and correlated to changes in the renal expression of HIF-1α/2α, and PHD3. Urinary KIM-1 concentration was tested as a correlate to HIF pathway changes. FINDINGS Both vildagliptin- and empagliflozin-treated groups exhibited significant improvement in the functional, pathological, and ultra-structural renal changes induced by chronic diabetes. Compared to the untreated group, renal gene expression of HIF-1α was decreased while that of HIF-2α was increased in both treated groups, with significantly greater effects observed with SGLT2i. Renal PHD3 immune-reactivity was also decreased by both drugs, again with better efficacy for the SGLT2i. Importantly, improvements in the diabetic kidney biochemical and structural biomarkers were significantly correlated to PHD3 reductions and HIF-2α increments. CONCLUSIONS Both DPP-4i and SGLT2i could delay the progression of DN through their differential modulating effects on the PHD3/ HIF-2α pathway with significantly better efficacy for SGLT2i.
Collapse
Affiliation(s)
- Emad Samaan
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Nehal M Ramadan
- Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, 35516, Egypt; Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Clinical Pharmacology, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt.
| | - Hoda M M Abdulaziz
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Dina Ibrahim
- Pathology Department, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Rana ElBayar
- Undergraduate Medical student, Faculty of Medicine, Mansoura University, Egypt
| | - Yasmin Ghattas
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Joly Abdlmalek
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Omnia Bayali
- Undergraduate medical student, Mansoura Manchester Program of Medical Education, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | | - Aya Maghrabia
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt
| | - Randa El-Gamal
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, 35516, Egypt; Department of Medical Biochemistry, Horus University in Egypt (HUE), New Damietta, Damietta, Egypt
| |
Collapse
|
10
|
Fasoula NA, Xie Y, Katsouli N, Reidl M, Kallmayer MA, Eckstein HH, Ntziachristos V, Hadjileontiadis L, Avgerinos DV, Briasoulis A, Siasos G, Hosseini K, Doulamis I, Kampaktsis PN, Karlas A. Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:383. [PMID: 37754812 PMCID: PMC10531807 DOI: 10.3390/jcdd10090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Microvascular changes in diabetes affect the function of several critical organs, such as the kidneys, heart, brain, eye, and skin, among others. The possibility of detecting such changes early enough in order to take appropriate actions renders the development of appropriate tools and techniques an imperative need. To this end, several sensing and imaging techniques have been developed or employed in the assessment of microangiopathy in patients with diabetes. Herein, we present such techniques; we provide insights into their principles of operation while discussing the characteristics that make them appropriate for such use. Finally, apart from already established techniques, we present novel ones with great translational potential, such as optoacoustic technologies, which are expected to enter clinical practice in the foreseeable future.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yi Xie
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Mario Reidl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Michael A. Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Alexandros Briasoulis
- Aleksandra Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Gerasimos Siasos
- Sotiria Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran;
| | - Ilias Doulamis
- Department of Surgery, The Johns Hopkins Hospital, School of Medicine, Baltimore, MD 21287, USA;
| | | | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
11
|
Wang Y, Ju Y, An Q, Lin L, Liu AL. mDIXON-Quant for differentiation of renal damage degree in patients with chronic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1187042. [PMID: 37547308 PMCID: PMC10402729 DOI: 10.3389/fendo.2023.1187042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Background Chronic kidney disease (CKD) is a complex syndrome with high morbidity and slow progression. Early stages of CKD are asymptomatic and lack of awareness at this stage allows CKD to progress through to advanced stages. Early detection of CKD is critical for the early intervention and prognosis improvement. Purpose To assess the capability of mDIXON-Quant imaging to detect early CKD and evaluate the degree of renal damage in patients with CKD. Study type Retrospective. Population 35 patients with CKD: 18 cases were classifified as the mild renal damage group (group A) and 17 cases were classifified as the moderate to severe renal damage group (group B). 22 healthy volunteers (group C). Field strength/sequence A 3.0 T/T1WI, T2WI and mDIXON-Quant sequences. Assessment Transverse relaxation rate (R2*) values and fat fraction (FF) values derived from the mDIXON-Quant were calculated and compared among the three groups. Statistical tests The intra-class correlation (ICC) test; Chi-square test or Fisher's exact test; Shapiro-Wilk test; Kruskal Wallis test with adjustments for multiplicity (Bonferroni test); Area under the receiver operating characteristic (ROC) curve (AUC). The significance threshold was set at P < 0.05. Results Cortex FF values and cortex R2* values were significantly different among the three groups (P=0.028, <0.001), while medulla R2* values and medulla FF values were not (P=0.110, 0.139). Cortex FF values of group B was significantly higher than that of group A (Bonferroni adjusted P = 0.027). Cortex R2* values of group A and group B were both significantly higher than that of group C (Bonferroni adjusted P = 0.012, 0.001). The AUC of cortex FF values in distinguishing group A and group B was 0.766. The diagnostic efficiency of cortex R2* values in distinguishing group A vs. group C and group B vs. group C were 0.788 and 0.829. Conclusion The mDIXON-Quant imaging had a potential clinical value in early diagnosis of CKD and assessing the degree of renal damage in CKD patients.
Collapse
Affiliation(s)
- Yue Wang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ye Ju
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi An
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Liangjie Lin
- Clinical and Technical Support, Philips Healthcare, Beijing, China
| | - Ai Lian Liu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Zhang Z, Chen Y, Zhou X, Liu S, Yu J. The value of functional magnetic resonance imaging in the evaluation of diabetic kidney disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14:1226830. [PMID: 37484949 PMCID: PMC10360195 DOI: 10.3389/fendo.2023.1226830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background The diversity of clinical trajectories in diabetic kidney disease (DKD) has made blood and biochemical urine markers less precise, while renal puncture, the gold standard, is almost impossible in the assessment of diabetic kidney disease, and the value of functional magnetic resonance imaging in the evaluation of diabetic pathological alterations is increasingly recognized. Methods The literature on functional magnetic resonance imaging (fMRI) for the assessment of renal alterations in diabetic kidney disease was searched in PubMed, Web of Science, Cochrane Library, and Embase databases. The search time limit is from database creation to March 10, 2023. RevMan was used to perform a meta-analysis of the main parameters of fMRIs extracted from DKD patients and healthy volunteers (HV). Results 24 publications (1550 subjects) were included in this study, using five functional MRIs with seven different parameters. The renal blood flow (RBF) values on Arterial spin labeling magnetic resonance imaging (ASL-MRI) was significantly lower in the DKD group than in the HV group. The [WMD=-99.03, 95% CI (-135.8,-62.27), P<0.00001]; Diffusion tensor imaging magnetic resonance imaging (DTI-MRI) showed that the fractional anisotropy (FA) values in the DKD group were significantly lower than that in HV group [WMD=-0.02, 95%CI (-0.03,-0.01), P<0.0001]. And there were no statistically significant differences in the relevant parameters in Blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) or Intro-voxel incoherent movement magnetic resonance imaging (IVIM-DWI). Discussion ASL and DWI can identify the differences between DKD and HV. DTI has a significant advantage in assessing renal cortical changes; IVIM has some value in determining early diabetic kidney disease from the cortex or medulla. We recommend combining multiple fMRI parameters to assess structural or functional changes in the kidney to make the assessment more comprehensive. We did not observe a significant risk of bias in the present study. Systematic review registration https://www.crd.york.ac.uk, identifier CRD42023409249.
Collapse
Affiliation(s)
- Ziqi Zhang
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Su Liu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Gervasini G. Recent Advances and Remaining Challenges in the Management of Diabetic Kidney Disease. J Clin Med 2023; 12:jcm12082759. [PMID: 37109096 PMCID: PMC10142336 DOI: 10.3390/jcm12082759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetic kidney disease (DKD), which refers to pathologic structural and functional changes observed in the kidneys of patients with diabetes mellitus (DM), is the greatest contributor to CKD and the most common cause of end-stage kidney disease (ESKD) worldwide [...].
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06005 Badajoz, Spain
| |
Collapse
|
14
|
Zhou H, Si Y, Sun J, Deng J, Yang L, Tang Y, Qin W. Effectiveness of functional magnetic resonance imaging for early identification of chronic kidney disease: A systematic review and network meta-analysis. Eur J Radiol 2023; 160:110694. [PMID: 36642011 DOI: 10.1016/j.ejrad.2023.110694] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE The commonly used clinical indicators are not sensitive enough on detecting early chronic kidney disease (CKD), whether functional magnetic resonance imaging (fMRI) can be regarded as a new noninvasive method to identify early stages of CKD and even different stages remains unknown. We performed a network meta-analysis to explore the question. METHODS Five databases were searched to identify eligible articles from 2000 to 2022. The outcome indicators were imaging biomarkers of fMRI techniques, including apparent diffusion coefficient (ADC) by diffusion-weighted imaging (DWI), fractional anisotropy (FA) by diffusion tensor imaging (DTI), diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) by intravoxel incoherent motion imaging (IVIM), and apparent relaxation rate (R2*) by blood oxygen level-dependent (BOLD). RESULTS A total of 21 articles with 1472 patients were included for analysis. Cortical FA, f, and R2* values in CKD stages 1-2 were found statistically different with healthy controls (mean difference (MD), -0.03, 95% confidence interval (CI) -0.05, -0.01; MD, -0.04, 95% CI -0.06, -0.02; MD, 2.22, 95% CI 0.87, 3.57, respectively), and cortical ADC values were significantly different among different CKD stages (stages 3 and 1-2: MD, -0.15, 95% CI -0.23, -0.06; stages 4-5 and 3: MD -0.27, 95% CI -0.39, -0.14). CONCLUSION The results indicated fMRI techniques had great efficacy in assessing early stages and different stages of CKD, among which DTI, IVIM, and BOLD exerted great superiority in differentiating early CKD patients from the general population, while DWI showed the advantage in distinguishing different CKD stages.
Collapse
Affiliation(s)
- Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Si
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jiantong Sun
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Jiaxin Deng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Ling Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Hypoxia-Inducible Factors and Diabetic Kidney Disease—How Deep Can We Go? Int J Mol Sci 2022; 23:ijms231810413. [PMID: 36142323 PMCID: PMC9499602 DOI: 10.3390/ijms231810413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is one of the leading causes of chronic kidney disease (CKD), and multiple underlying mechanisms involved in pathogenesis of diabetic nephropathy (DN) have been described. Although various treatments and diagnosis applications are available, DN remains a clinical and economic burden, considering that about 40% of type 2 diabetes patients will develop nephropathy. In the past years, some research found that hypoxia response and hypoxia-inducible factors (HIFs) play critical roles in the pathogenesis of DN. Hypoxia-inducible factors (HIFs) HIF-1, HIF-2, and HIF-3 are the main mediators of metabolic responses to the state of hypoxia, which seems to be the one of the earliest events in the occurrence and progression of diabetic kidney disease (DKD). The abnormal activity of HIFs seems to be of crucial importance in the pathogenesis of diseases, including nephropathies. Studies using transcriptome analysis confirmed by metabolome analysis revealed that HIF stabilizers (HIF-prolyl hydroxylase inhibitors) are novel therapeutic agents used to treat anemia in CKD patients that not only increase endogenous erythropoietin production, but also could act by counteracting the metabolic alterations in incipient diabetic kidney disease and relieve oxidative stress in the renal tissue. In this review, we present the newest data regarding hypoxia response and HIF involvement in the pathogenesis of diabetic nephropathy and new therapeutic insights, starting from improving kidney oxygen homeostasis.
Collapse
|
16
|
Xu F, Lu H, Lai T, Lin L, Chen Y. Association between Vitamin D Status and Mortality among Adults with Diabetic Kidney Disease. J Diabetes Res 2022; 2022:9632355. [PMID: 35586117 PMCID: PMC9110229 DOI: 10.1155/2022/9632355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Emerging evidence demonstrates that vitamin D status contributes to the incidence of diabetic kidney disease (DKD). However, the causal relationships between vitamin D and mortality among individuals with DKD are inconclusive. Our study is aimed at exploring the relationship between serum 25-hydroxyvitamin D (25(OH)D) concentrations and mortality among adults with DKD. Research Design and Methods. Our study included 1,202 adult participants with DKD from the National Health and Nutrition Examination Survey (NHANES) 2001-2014. Cox and competing-risks regression were used to estimate hazard ratios (HRs) and 95% CIs for associations between 25(OH)D concentrations and survival. RESULTS The overall mean serum 25(OH)D concentration was 55.9 ± 26.3. Vitamin D deficiency (25(OH)D < 50 nmol/l), insufficiency group (50 ≤ 25(OH)D < 75 nmol/l), and sufficiency group (25(OH)D ≥ 75 nmol/l) were observed in 552 (45.9%), 409 (34.0%), and 241 (20.0%) participants, respectively. Higher levels of vitamin D were significantly associated with improved all-cause and nonaccident- and malignant neoplasm-cause mortality among individuals with DKD after adjusting for the potential confounding factors. CONCLUSIONS We observed widespread vitamin D deficiency or insufficiency in DKD patients. Higher 25(OH)D values were significantly correlated with lower risk of mortality after adjusting for confounding variables.
Collapse
Affiliation(s)
- Feng Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hongyu Lu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Tianwen Lai
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 515041, China
| | - Ling Lin
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Rheumatology, Shantou University Medical College, Shantou 515041, China
| | - Yongsong Chen
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
17
|
Dillman JR, Benoit SW, Gandhi DB, Trout AT, Tkach JA, VandenHeuvel K, Devarajan P. Multiparametric quantitative renal MRI in children and young adults: comparison between healthy individuals and patients with chronic kidney disease. Abdom Radiol (NY) 2022; 47:1840-1852. [PMID: 35237897 DOI: 10.1007/s00261-022-03456-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE Multiparametric quantitative renal MRI may provide noninvasive radiologic biomarkers of chronic kidney disease (CKD) based on investigations in animal models and adults. We aimed to (1) obtain normative multiparametric quantitative MRI data from the kidneys of healthy children and young adults, (2) compare MRI measurements between healthy control participants and patients with CKD, and (3) determine if MRI measurements correlate with clinical and laboratory data as well as histology. METHODS This was a prospective, case-control study of 20 healthy controls and 12 CKD patients who underwent percutaneous renal biopsy ranging from 12 to 23 years of age between October 2018 and March 2020. Kidney function was documented and pathology assessed for fibrosis/inflammation. Utilizing a field strength of 1.5T, we examined renal T1, T2, and T2* relaxation mapping, MR elastography (MRE), and diffusion-weighted imaging (DWI). A single analyst made all manual measurements for quantitative MRI pulse sequences. Independent measurements from cortex, medulla, and whole kidney were obtained by drawing regions of interest on single slices from the upper, mid, and lower kidney. A weighted average was calculated for each kidney; if two kidneys, the right and left were averaged. Continuous variables were compared with Mann-Whitney U test; bivariate relationships were assessed using Spearman rank-order correlation. RESULTS Median estimated glomerular filtration rate (eGFR) was 112.3 ml/min/1.73 m2 in controls (n = 20, 10 females) and 55.0 ml/min/m2 in CKD patients (n = 12, 2 females) (p < 0.0001). Whole kidney (1333 vs. 1291 ms; p = 0.018) and cortical (1212 vs 1137 ms; p < 0.0001) T1 values were higher in CKD patients. Cortical T1 values correlated with eGFR (rho = - 0.62; p = 0.0003) and cystatin C (rho = 0.58; p = 0.0007). Whole kidney (1.87 vs. 2.02 10-3 mm2/s; p = 0.007), cortical (1.89 vs. 2.04 10-3 mm2/s; p = 0.008), and medullary (1.87 vs. 1.98 10-3 mm2/s; p = 0.0095) DWI apparent diffusion coefficients (ADC) were lower in CKD patients. Whole kidney ADC correlated with eGFR (rho = 0.45; p = 0.012) and cystatin C (rho = - 0.46; p = 0.009). Cortical histologic inflammation correlated with DWI ADC (rho = - 0.71; p = 0.011). CONCLUSION Renal T1 relaxation and DWI ADC measurements differ between pediatric healthy controls and CKD patients, correlate with laboratory markers of CKD, and may have histologic correlates.
Collapse
Affiliation(s)
- Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA.
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Stefanie W Benoit
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Deep B Gandhi
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45244, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Katherine VandenHeuvel
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|