1
|
Mora L, Pons-Pellicé L, Quintana-Díaz M. Viscoelastic monitoring of direct oral anticoagulants (DOAC). BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2025; 23:59-63. [PMID: 39621888 PMCID: PMC11841956 DOI: 10.2450/bloodtransfus.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Lidia Mora
- Department of Anesthesiology, Intensive Care and Pain Clinic, Vall d’Hebron Trauma, Rehabilitation and Burns Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Laura Pons-Pellicé
- Department of Anesthesiology, Intensive Care and Pain Clinic, Vall d’Hebron Trauma, Rehabilitation and Burns Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Manuel Quintana-Díaz
- Trauma Intensive Care Unit, Intensive Care Medicine Department, La Paz University Hospital, IdiPaz, Department of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Wienhold J, Rossaint R, Vandeput E, Grottke O. The Efficacy of Andexanet Alfa for the Reversal of Factor Xa Inhibitors Is Not Influenced by Hemodilution with Different Volume Expanders. J Clin Med 2024; 13:6706. [PMID: 39597850 PMCID: PMC11594903 DOI: 10.3390/jcm13226706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Andexanet alfa is a specific antidote for factor Xa (FXa) inhibitors. It is licensed to treat patients under FXa inhibitor therapy with life-threatening bleeding. Concomitantly, volume expanders are used to compensate for blood loss and maintain circulation. The competitive binding of andexanet to FXa inhibitors may be disrupted due to hemodilution, as shown by laboratory assays with high sample dilution. This study investigated the efficacy of andexanet for the reversal of FXa inhibitors under hemodilution. Methods: Blood from 10 healthy volunteers was anticoagulated with rivaroxaban and subsequently treated with four different volume expanders (Ringer's solution, 4% gelatine, 5% and 20% human albumin (HA)) at two dilution levels (20% and 50%). After anticoagulation and hemodilution, andexanet was added according to the high-dose protocol. Blood samples were analyzed using a Russell's viper venom (RVV) test on a Clot Pro® device, a thrombin generation assay, a fully automated coagulation analyzer and a chromogenic anti-FXa activity assay. Results: After anticoagulation, the median rivaroxaban concentration was 272 ng/mL (IQR 254-353). Anticoagulation with rivaroxaban caused a significant impairment of all coagulation parameters, which was further aggravated by hemodilution. After the administration of andexanet, coagulation parameters in anticoagulated samples were reversed to near baseline in all groups. Andexanet administration decreased the rivaroxaban plasma concentration in all groups to a median of <10 ng/mL. In the anticoagulated, non-hemodiluted samples, anti-FXa activity was reduced by 98%. The anti-FXa activity in the anticoagulated, hemodiluted samples was reduced by approximately 96% in the 20% diluted samples and by about 93% in the 50% diluted samples. Conclusions: Our data indicate that FXa inhibitor reversal with andexanet is about 5% less effective with 50% hemodilution than in non-hemodiluted samples.
Collapse
Affiliation(s)
- Jan Wienhold
- Department of Anesthesiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
3
|
Reardon B, Pasalic L, Favaloro EJ. The Role of Viscoelastic Testing in Assessing Hemostasis: A Challenge to Standard Laboratory Assays? J Clin Med 2024; 13:3612. [PMID: 38930139 PMCID: PMC11205135 DOI: 10.3390/jcm13123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Viscoelastic testing is increasingly being used in clinical and research settings to assess hemostasis. Indeed, there are potential situations in which viscoelastic testing is reportedly superior to standard routine laboratory testing for hemostasis. We report the current testing platforms and terminology, as well as providing a concise narrative review of the published evidence to guide its use in various clinical settings. Notably, there is increasing evidence of the potential utility of viscoelastic testing for assessment of direct oral anticoagulants, and bleeding associated with chronic liver disease, orthotopic liver transplantation, cardiac surgery, trauma, obstetrics and pediatrics.
Collapse
Affiliation(s)
- Benjamin Reardon
- School of Medicine and Public Health, Joint Medical Program, University of Newcastle, Callaghan, NSW 2145, Australia;
- Haematology Department, Calvary Mater Hospital Newcastle, Waratah, NSW 2298, Australia
| | - Leonardo Pasalic
- Haematology Department, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia;
- Westmead Clinical School, University of Sydney, Westmead, NSW 2145, Australia
- Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Emmanuel J. Favaloro
- Haematology Department, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia;
- Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Westmead, NSW 2145, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, NSW 2145, Australia
| |
Collapse
|
4
|
Schöchl H, Grottke O, Schmitt FCF. Direct oral anticoagulants in trauma patients. Curr Opin Anaesthesiol 2024; 37:93-100. [PMID: 38390987 DOI: 10.1097/aco.0000000000001356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW Direct oral anticoagulants (DOACs) are increasingly prescribed for prevention of thromboembolic events. Thus, trauma care providers are facing a steadily raising number of injured patients on DOACs. RECENT FINDINGS Despite a predictable pharmacokinetic profile, the resulting plasma levels of trauma patients upon admission and bleeding risks remain uncertain. Therefore, recent guidelines recommend the measurement of DOAC plasma concentrations in injured patients. Alternatively, DOAC specific visco-elastic tests assays can be applied to identify DOAC patients at bleeding risk.Bleeding complications in trauma patients on DOACs are generally higher compared to nonanticoagulated subjects, but comparable to vitamin K antagonists (VKAs). In particular, a traumatic brain injury does not carry an increased risk of intracranial bleeding due to a DOAK intake compared to VKAs. Current studies demonstrated that up to 14% of patients with a hip fracture are on DOACs prior to surgery. However, the majority can be operated safely within a 24h time window without an increased bleeding rate.Specific antagonists facilitate rapid reversal of patients on DOACs. Idarucizumab for dabigatran, and andexanet alfa for apixaban and rivaroxaban have been approved for life threatening bleeding. Alternatively, prothrombin complex concentrate can be used. Dialysis is a potential treatment option for dabigatran and haemoabsorption with special filters can be applied in patients on FXa-inhibitors. SUMMARY Current guidelines recommend the measurement of DOAC plasma levels in trauma patients. Compared to VKAs, DOACs do not carry a higher bleeding risk. DOAC specific antagonists facilitate the individual bleeding management.
Collapse
Affiliation(s)
- Herbert Schöchl
- Ludwig Boltzmann Institute for Traumatology, The research centre in cooperation with AUVA, Vienna, Austria
| | - Oliver Grottke
- Department of Anaesthesiology, RWTH Aachen University Hospital, Aachen
| | - Felix C F Schmitt
- Department of Anaesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Schmitt FCF, Schöchl H, Brün K, Kreuer S, Schneider S, Hofer S, Weber CF. [Update on point-of-care-based coagulation treatment : Systems, reagents, device-specific treatment algorithms]. DIE ANAESTHESIOLOGIE 2024; 73:110-123. [PMID: 38261018 PMCID: PMC10850202 DOI: 10.1007/s00101-023-01368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 01/24/2024]
Abstract
Viscoelastic test (VET) procedures suitable for point-of-care (POC) testing are in widespread clinical use. Due to the expanded range of available devices and in particular due to the development of new test approaches and methods, the authors believe that an update of the current treatment algorithms is necessary. The aim of this article is to provide an overview of the currently available VET devices and the associated reagents. In addition, two treatment algorithms for the VET devices most commonly used in German-speaking countries are presented.
Collapse
Affiliation(s)
- Felix C F Schmitt
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Deutschland.
| | - Herbert Schöchl
- Ludwig Boltzmann Institut für Traumatologie, AUVA Research Center, Wien, Österreich
- Klinik für Anästhesiologie und Intensivmedizin, AUVA Unfallkrankenhaus, Salzburg, Österreich
| | - Kathrin Brün
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - Sascha Kreuer
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
- Medizinische Fakultät, Universität des Saarlandes, Homburg, Deutschland
| | - Sven Schneider
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum des Saarlandes, Homburg, Deutschland
| | - Stefan Hofer
- Klinik für Anästhesiologie, Westpfalz-Klinikum Kaiserslautern, Kaiserslautern, Deutschland
| | - Christian F Weber
- Klinik für Anästhesiologie, Intensiv- und Notfallmedizin, Asklepios Klinik Wandsbek, Hamburg, Deutschland
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Frankfurt, Frankfurt am Main, Deutschland
| |
Collapse
|
6
|
Gruneberg D, Hofer S, Schöchl H, Zipperle J, Oberladstätter D, Decker SO, Von der Forst M, Tourelle KM, Dietrich M, Weigand MA, Schmitt FCF. Comparison of Two Viscoelastic Testing Devices in a Parturient Population. J Clin Med 2024; 13:692. [PMID: 38337386 PMCID: PMC10856714 DOI: 10.3390/jcm13030692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Viscoelastic hemostatic assays (VHAs) have become an integral diagnostic tool in guiding hemostatic therapy, offering new opportunities in personalized hemostatic resuscitation. This study aims to assess the interchangeability of ClotPro® and ROTEM® delta in the unique context of parturient women. Methods: Blood samples from 217 parturient women were collected at three timepoints. A total of 631 data sets were eligible for our final analysis. The clotting times were analyzed via extrinsic and intrinsic assays, and the clot firmness parameters A5, A10, and MCF were analyzed via extrinsic, intrinsic, and fibrin polymerization assays. In parallel, the standard laboratory coagulation statuses were obtained. Device comparison was assessed using regression and Bland-Altman plots. The best cutoff calculations were used to determine the VHA values corresponding to the established standard laboratory cutoffs. Results: The clotting times in the extrinsic and intrinsic assays showed notable differences between the devices, while the extrinsic and intrinsic clot firmness results demonstrated interchangeability. The fibrinogen assays revealed higher values in ClotPro® compared to ROTEM®. An ROC analysis identified VHA parameters with high predictive values for coagulopathy exclusion and yet low specificity. Conclusions: In the obstetric setting, the ROTEM® and ClotPro® parameters demonstrate a significant variability. Device- and indication-specific transfusion algorithms are essential for the accurate interpretation of measurements and adequate hemostatic therapy.
Collapse
Affiliation(s)
- Daniel Gruneberg
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (D.G.)
| | - Stefan Hofer
- Department of Anesthesiology, Kaiserslautern Westpfalz Hospital, 67655 Kaiserslautern, Germany
| | - Herbert Schöchl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Johannes Zipperle
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
| | - Daniel Oberladstätter
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Department of Anaesthesiology and Intensive Care Medicine, AUVA Trauma Centre Salzburg, Academic Teaching Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sebastian O. Decker
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (D.G.)
| | - Maik Von der Forst
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (D.G.)
| | - Kevin Michel Tourelle
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (D.G.)
| | - Maximilian Dietrich
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (D.G.)
| | - Markus A. Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (D.G.)
| | - Felix C. F. Schmitt
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany; (D.G.)
| |
Collapse
|
7
|
Koscielny J, Birschmann I, Bauersachs R, Trenk D, Langer F, Möhnle P, Beyer-Westendorf J. [Basics for the Use of Andexanet]. Hamostaseologie 2023; 43:398-409. [PMID: 37813368 DOI: 10.1055/a-2136-2391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND For life-threatening or uncontrollable bleeding in association with the thrombin inhibitor dabigatran, the monoclonal antibody fragment idarucizumab is available, and for bleeding in association with the direct factor Xa inhibitors rivaroxaban or apixaban, the modified recombinant FXa protein andexanet is available for reversal. These antidotes represent emergency drugs that are typically used only after performing guideline-compliant multimodal measures. METHODS An interdisciplinary group of experienced experts in the fields of angiology, hematology, internal medicine, clinical pharmacology, laboratory medicine, transfusion medicine, anesthesiology, intensive care, and hemostaseology developed recommendations relevant to daily clinical practice based on the current scientific evidence. RESULTS Reversal of oral anticoagulants should be considered for severe bleeding in the following situations: (1) life-threatening bleeding or refractory hemorrhagic shock, (2) intracerebral bleeding, or (3) endoscopically unstoppable gastrointestinal bleeding. After successful hemostasis, anticoagulation (e.g., direct oral anticoagulant, vitamin K antagonist, and heparin) should be resumed promptly, taking into account individual bleeding and thromboembolic risk. DISCUSSION This article aims to facilitate the management of patients with andexanet by all medical disciplines involved, thereby ensuring optimal care of patients during bleeding episodes.
Collapse
Affiliation(s)
- J Koscielny
- Charité, Universitätsmedizin Berlin, Gerinnungsambulanz mit Hämophiliezentrum, Berlin, Germany
| | - I Birschmann
- Herz- und Diabeteszentrum Nordrhein-Westfalen, Institut für Laboratoriums- und Transfusionsmedizin, Universitätsklinik der Ruhr-Universität Bochum, Bochum, Germany
| | - R Bauersachs
- Cardioangiologisches Centrum Bethanien, CCB, Frankfurt am Main, Germany
- Center for Vascular Research, München, Germany
| | - D Trenk
- Universitätsklinikum Freiburg, Universitat-Herzzentrum, Klinik für Kardiologie und Angiologie - Klinische Pharmakologie, Bad Krozingen, Germany
| | - F Langer
- Universitätsklinikum Eppendorf, Zentrum für Onkologie, II. Medizinische Klinik und Poliklinik (Gerinnungsambulanz und Hämophiliezentrum), Hamburg, Germany
| | - P Möhnle
- Abteilung für Transfusionsmedizin, Zelltherapeutika und Hämostaseologie, LMU Klinikum München, München, Germany
| | - J Beyer-Westendorf
- Thromboseforschung und Gerinnungsstörungen, Universitätsklinikum Carl Gustav Carus, Med. Klinik I, Dresden, Germany
| |
Collapse
|
8
|
Bunch CM, Chang E, Moore EE, Moore HB, Kwaan HC, Miller JB, Al-Fadhl MD, Thomas AV, Zackariya N, Patel SS, Zackariya S, Haidar S, Patel B, McCurdy MT, Thomas SG, Zimmer D, Fulkerson D, Kim PY, Walsh MR, Hake D, Kedar A, Aboukhaled M, Walsh MM. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock. Front Physiol 2023; 14:1094845. [PMID: 36923287 PMCID: PMC10009294 DOI: 10.3389/fphys.2023.1094845] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function-including fibrinolysis-to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.
Collapse
Affiliation(s)
- Connor M Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Eric Chang
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Ernest E Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States
| | - Hunter B Moore
- Department of Surgery, Ernest E. Moore Shock Trauma Center at Denver Health, University of Colorado, Denver, CO, United States.,Department of Transplant Surgery, Denver Health and University of Colorado Health Sciences Center, Denver, CO, United States
| | - Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joseph B Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States.,Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Mahmoud D Al-Fadhl
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Anthony V Thomas
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Nuha Zackariya
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States
| | - Shivani S Patel
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Sufyan Zackariya
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Saadeddine Haidar
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI, United States
| | - Bhavesh Patel
- Division of Critical Care, Department of Medicine, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Michael T McCurdy
- Division of Pulmonary and Critical Care, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Scott G Thomas
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Donald Zimmer
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Daniel Fulkerson
- Department of Trauma Surgery, Memorial Leighton Trauma Center, South Bend, IN, United States
| | - Paul Y Kim
- Department of Medicine, McMaster University, Hamilton, ON, Canada.,Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
| | | | - Daniel Hake
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Archana Kedar
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Michael Aboukhaled
- Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| | - Mark M Walsh
- Department of Medical Education, Indiana University School of Medicine, Notre Dame Campus, South Bend, IN, United States.,Departments of Emergency Medicine and Internal Medicine, Saint Joseph Regional Medical Center, Mishawaka, IN, United States
| |
Collapse
|
9
|
Sahli SD, Castellucci C, Roche TR, Rössler J, Spahn DR, Kaserer A. The impact of direct oral anticoagulants on viscoelastic testing - A systematic review. Front Cardiovasc Med 2022; 9:991675. [PMID: 36419490 PMCID: PMC9676657 DOI: 10.3389/fcvm.2022.991675] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND In case of bleeding patients and in acute care, the assessment of residual direct oral anticoagulant (DOAC) activity is essential for evaluating the potential impact on hemostasis, especially when a timely decision on urgent surgery or intervention is required. Viscoelastic tests are crucial in a modern goal-directed coagulation management to assess patients' coagulation status. However, the role of viscoelastic test to detect and quantify residual DOAC plasma levels is controversially discussed. The aim of this review was to systematically summarize the evidence of viscoelastic tests for the assessment of residual DOAC activity. METHOD PubMed, Embase, Scopus, and the Cochrane Library were searched for original articles investigating the effect of rivaroxaban, apixaban, edoxaban, or dabigatran plasma levels on different viscoelastic tests of the adult population from database inception to December 31, 2021. RESULTS We included 53 studies from which 31 assessed rivaroxaban, 22 apixaban, six edoxaban, and 29 dabigatran. The performance of viscoelastic tests varied across DOACs and assays. DOAC specific assays are more sensitive than unspecific assays. The plasma concentration of rivaroxaban and dabigatran correlates strongly with the ROTEM EXTEM, ClotPro RVV-test or ECA-test clotting time (CT) and TEG 6s anti-factor Xa (AFXa) or direct thrombin inhibitor (DTI) channel reaction time (R). Results of clotting time (CT) and reaction time (R) within the normal range do not reliable exclude relevant residual DOAC plasma levels limiting the clinical utility of viscoelastic assays in this context. CONCLUSION Viscoelastic test assays can provide fast and essential point-of-care information regarding DOAC activity, especially DOAC specific assays. The identification and quantification of residual DOAC plasma concentration with DOAC unspecific viscoelastic assays are not sensitive enough, compared to recommended anti-Xa activity laboratory measurements. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=320629], identifier [CRD42022320629].
Collapse
Affiliation(s)
- Sebastian D. Sahli
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Clara Castellucci
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Tadzio R. Roche
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Julian Rössler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Donat R. Spahn
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| | - Alexander Kaserer
- Institute of Anesthesiology, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Niemann M, Otto E, Eder C, Youssef Y, Kaufner L, Märdian S. Coagulopathy management of multiple injured patients - a comprehensive literature review of the European guideline 2019. EFORT Open Rev 2022; 7:710-726. [PMID: 36287131 PMCID: PMC9619392 DOI: 10.1530/eor-22-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The European guideline on the management of trauma-induced major bleeding and coagulopathy summarises the most relevant recommendations for trauma coagulopathy management. The management of trauma-induced major bleeding should interdisciplinary follow algorithms which distinguish between life-threatening and non-life-threatening bleeding. Point-of-care viscoelastic methods (VEM) assist target-controlled haemostatic treatment. Neither conventional coagulation assays nor VEM should delay treatment in life-threatening trauma-induced bleeding. Adjustments may be rational due to local circumstances, including the availability of blood products, pharmaceuticals, and employees.
Collapse
Affiliation(s)
- Marcel Niemann
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany,Correspondence should be addressed to M Niemann;
| | - Ellen Otto
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Eder
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yasmin Youssef
- Department of Orthopaedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Lutz Kaufner
- Charité – Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Märdian
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
11
|
Bunch CM, Berquist M, Ansari A, McCoy ML, Langford JH, Brenner TJ, Aboukhaled M, Thomas SJ, Peck E, Patel S, Cancel E, Al-Fadhl MD, Zackariya N, Thomas AV, Aversa JG, Greene RB, Seder CW, Speybroeck J, Miller JB, Kwaan HC, Walsh MM. The Choice between Plasma-Based Common Coagulation Tests and Cell-Based Viscoelastic Tests in Monitoring Hemostatic Competence: Not an either-or Proposition. Semin Thromb Hemost 2022; 48:769-784. [PMID: 36174601 DOI: 10.1055/s-0042-1756302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
There has been a significant interest in the last decade in the use of viscoelastic tests (VETs) to determine the hemostatic competence of bleeding patients. Previously, common coagulation tests (CCTs) such as the prothrombin time (PT) and partial thromboplastin time (PTT) were used to assist in the guidance of blood component and hemostatic adjunctive therapy for these patients. However, the experience of decades of VET use in liver failure with transplantation, cardiac surgery, and trauma has now spread to obstetrical hemorrhage and congenital and acquired coagulopathies. Since CCTs measure only 5 to 10% of the lifespan of a clot, these assays have been found to be of limited use for acute surgical and medical conditions, whereby rapid results are required. However, there are medical indications for the PT/PTT that cannot be supplanted by VETs. Therefore, the choice of whether to use a CCT or a VET to guide blood component therapy or hemostatic adjunctive therapy may often require consideration of both methodologies. In this review, we provide examples of the relative indications for CCTs and VETs in monitoring hemostatic competence of bleeding patients.
Collapse
Affiliation(s)
- Connor M Bunch
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Margaret Berquist
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Aida Ansari
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Max L McCoy
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Jack H Langford
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Toby J Brenner
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Michael Aboukhaled
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Samuel J Thomas
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Ethan Peck
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Shivani Patel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Emily Cancel
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana
| | - Mahmoud D Al-Fadhl
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Nuha Zackariya
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - Anthony V Thomas
- Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| | - John G Aversa
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ryan B Greene
- Department of Interventional Radiology, St. Joseph Regional Medical Center, Mishawaka, Indiana
| | - Christopher W Seder
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Jacob Speybroeck
- Department of Orthopedic Surgery, Case Western Medical Center, Cleveland, Ohio
| | - Joseph B Miller
- Department of Emergency Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Hau C Kwaan
- Division of Hematology and Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mark M Walsh
- Department of Emergency Medicine, Saint Joseph Regional Medical Center, Mishawaka, Indiana.,Indiana University School of Medicine, Notre Dame Campus, South Bend, Indiana
| |
Collapse
|
12
|
Bradbury JL, Thomas SG, Sorg NR, Mjaess N, Berquist MR, Brenner TJ, Langford JH, Marsee MK, Moody AN, Bunch CM, Sing SR, Al-Fadhl MD, Salamah Q, Saleh T, Patel NB, Shaikh KA, Smith SM, Langheinrich WS, Fulkerson DH, Sixta S. Viscoelastic Testing and Coagulopathy of Traumatic Brain Injury. J Clin Med 2021; 10:jcm10215039. [PMID: 34768556 PMCID: PMC8584585 DOI: 10.3390/jcm10215039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022] Open
Abstract
A unique coagulopathy often manifests following traumatic brain injury, leading the clinician down a difficult decision path on appropriate prophylaxis and therapy. Conventional coagulation assays—such as prothrombin time, partial thromboplastin time, and international normalized ratio—have historically been utilized to assess hemostasis and guide treatment following traumatic brain injury. However, these plasma-based assays alone often lack the sensitivity to diagnose and adequately treat coagulopathy associated with traumatic brain injury. Here, we review the whole blood coagulation assays termed viscoelastic tests and their use in traumatic brain injury. Modified viscoelastic tests with platelet function assays have helped elucidate the underlying pathophysiology and guide clinical decisions in a goal-directed fashion. Platelet dysfunction appears to underlie most coagulopathies in this patient population, particularly at the adenosine diphosphate and/or arachidonic acid receptors. Future research will focus not only on the utility of viscoelastic tests in diagnosing coagulopathy in traumatic brain injury, but also on better defining the use of these tests as evidence-based and/or precision-based tools to improve patient outcomes.
Collapse
Affiliation(s)
- Jamie L. Bradbury
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Scott G. Thomas
- Department of Trauma Surgery, Memorial Hospital, South Bend, IN 46601, USA;
| | - Nikki R. Sorg
- Department of Emergency Medicine, Indiana University School of Medicine—South Bend, South Bend, IN 46617, USA; (N.R.S.); (A.N.M.); (S.R.S.)
| | - Nicolas Mjaess
- Department of Intensive Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (N.M.); (M.R.B.); (T.J.B.); (J.H.L.); (M.D.A.-F.); (Q.S.); (T.S.)
| | - Margaret R. Berquist
- Department of Intensive Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (N.M.); (M.R.B.); (T.J.B.); (J.H.L.); (M.D.A.-F.); (Q.S.); (T.S.)
| | - Toby J. Brenner
- Department of Intensive Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (N.M.); (M.R.B.); (T.J.B.); (J.H.L.); (M.D.A.-F.); (Q.S.); (T.S.)
| | - Jack H. Langford
- Department of Intensive Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (N.M.); (M.R.B.); (T.J.B.); (J.H.L.); (M.D.A.-F.); (Q.S.); (T.S.)
| | - Mathew K. Marsee
- Department of Otolaryngology, Portsmouth Naval Medical Center, Portsmouth, VA 23708, USA;
| | - Ashton N. Moody
- Department of Emergency Medicine, Indiana University School of Medicine—South Bend, South Bend, IN 46617, USA; (N.R.S.); (A.N.M.); (S.R.S.)
| | - Connor M. Bunch
- Department of Emergency Medicine, Indiana University School of Medicine—South Bend, South Bend, IN 46617, USA; (N.R.S.); (A.N.M.); (S.R.S.)
- Correspondence:
| | - Sandeep R. Sing
- Department of Emergency Medicine, Indiana University School of Medicine—South Bend, South Bend, IN 46617, USA; (N.R.S.); (A.N.M.); (S.R.S.)
| | - Mahmoud D. Al-Fadhl
- Department of Intensive Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (N.M.); (M.R.B.); (T.J.B.); (J.H.L.); (M.D.A.-F.); (Q.S.); (T.S.)
| | - Qussai Salamah
- Department of Intensive Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (N.M.); (M.R.B.); (T.J.B.); (J.H.L.); (M.D.A.-F.); (Q.S.); (T.S.)
| | - Tarek Saleh
- Department of Intensive Care Medicine, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA; (N.M.); (M.R.B.); (T.J.B.); (J.H.L.); (M.D.A.-F.); (Q.S.); (T.S.)
| | - Neal B. Patel
- Department of Neurosurgery, Memorial Hospital, South Bend, IN 46601, USA; (N.B.P.); (K.A.S.); (S.M.S.); (W.S.L.); (D.H.F.)
- Department of Neurosurgery, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA
| | - Kashif A. Shaikh
- Department of Neurosurgery, Memorial Hospital, South Bend, IN 46601, USA; (N.B.P.); (K.A.S.); (S.M.S.); (W.S.L.); (D.H.F.)
- Department of Neurosurgery, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA
| | - Stephen M. Smith
- Department of Neurosurgery, Memorial Hospital, South Bend, IN 46601, USA; (N.B.P.); (K.A.S.); (S.M.S.); (W.S.L.); (D.H.F.)
- Department of Neurosurgery, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA
| | - Walter S. Langheinrich
- Department of Neurosurgery, Memorial Hospital, South Bend, IN 46601, USA; (N.B.P.); (K.A.S.); (S.M.S.); (W.S.L.); (D.H.F.)
- Department of Neurosurgery, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA
| | - Daniel H. Fulkerson
- Department of Neurosurgery, Memorial Hospital, South Bend, IN 46601, USA; (N.B.P.); (K.A.S.); (S.M.S.); (W.S.L.); (D.H.F.)
- Department of Neurosurgery, St. Joseph Regional Medical Center, Mishawaka, IN 46545, USA
| | - Sherry Sixta
- Department of Trauma Surgery, Envision Physician Services, Plano, TX 75093, USA;
| |
Collapse
|