1
|
Rao Y, Chen X, Li K, Nie M, Liu X. Research progress on the role of decorin in the development of oral mucosal carcinogenesis. Oncol Res 2025; 33:577-590. [PMID: 40109852 PMCID: PMC11915041 DOI: 10.32604/or.2024.053119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/12/2024] [Indexed: 03/22/2025] Open
Abstract
Decorin (DCN) is primarily found in the connective tissues of various parts of the body, including the lungs, kidneys, bone tissue, aorta, and tendons. It is an important component of the extracellular matrix (ECM) and belongs to the class I small leucine-rich proteoglycans family. DCN is increasingly attracting attention due to its significant role in tumors, fibrotic diseases, and the regulation of vascular formation. Moreover, its anti-tumor properties have positioned it as a promising biomarker in the fight against cancer. Numerous studies have confirmed that DCN can exert inhibitory effects in various solid tumors, particularly in oral squamous cell carcinoma (OSCC), by activating its downstream pathways through binding with the epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition (MET) receptor, or by stabilizing and enhancing the expression of the tumor suppressor gene p53 to mediate apoptosis in cancer cells that have undergone mutation. The occurrence of OSCC is a continuous and dynamic process, encompassing the transition from normal mucosa to oral potentially malignant disorders (OPMDs), and further progressing from OPMDs to the malignant transformation into OSCC. We have found that DCN may exhibit a bidirectional effect in the progression of oral mucosal carcinogenesis, showing a trend of initial elevation followed by a decline, which decreases with the differentiation of OSCC. In OPMDs, DCN exhibits high expression and may be associated with malignant transformation, possibly linked to the increased expression of P53 in OPMDs. In OSCC, the expression of DCN is reduced, which can impact OSCC angiogenesis, and inhibit tumor cell proliferation, migration, and invasion capabilities, serving as a potential marker for predicting adverse prognosis in OSCC patients. This article reviews the current research status of DCN, covering its molecular structure, properties, and involvement in the onset and progression of oral mucosal carcinogenesis. It elucidates DCN's role in this process and aims to offer insights for future investigations into its mechanism of action in oral mucosal carcinogenesis and its potential application in the early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Yong Rao
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xiao Chen
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Kaiyu Li
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics and Oral Mucosal Diseases, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Basic Medicine of Stomatology, The Afliated Stomatology Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| |
Collapse
|
2
|
Appunni S, Saxena A, Ramamoorthy V, Zhang Y, Doke M, Nair SS, Khosla AA, Rubens M. Decorin: matrix-based pan-cancer tumor suppressor. Mol Cell Biochem 2025:10.1007/s11010-025-05224-z. [PMID: 39954173 DOI: 10.1007/s11010-025-05224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
Studies have shown that decorin is a potent pan-cancer tumor suppressor that is under-expressed in most cancers. Decorin interacts with receptor tyrosine kinases and functions as a pan-receptor tyrosine kinase inhibitor, thereby suppressing oncogenic signals. Decorin deficiency promotes epithelial-to-mesenchymal transition and enhances cancer dissemination and metastasis. According to recent GLOBOCAN estimates, the most common cancers worldwide are breast, lung, prostate, colorectal, skin (non-melanoma), and stomach. Considering the burden of rising cancer incidence and the importance of discovering novel molecular markers and potential therapeutic agents for cancer management, we have outlined the possible expressional and clinicopathological significance of decorin in major cancers based on available pre-clinical and clinical studies. Measuring plasma decorin is a minimally invasive technique, and human studies have shown that it is useful in predicting clinical outcomes in cancer though it needs further validation. Oncolytic virus-mediated decorin gene transfer has shown significant anti-tumorigenic effects in pre-clinical studies, though its implication in human subjects is yet to be understood. Exogenous decorin delivery in experimental studies has been shown to mitigate cancer growth, but its therapeutic efficacy and safety are poorly understood. Future research is required to translate the tumor-suppressive action of decorin observed in preclinical experiments to therapeutic interventions in human subjects.
Collapse
Affiliation(s)
| | - Anshul Saxena
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
- Baptist Health South Florida, Miami, FL, 33176, USA
| | | | - Yanjia Zhang
- Baptist Health South Florida, Miami, FL, 33176, USA
| | - Mayur Doke
- Miller School of Medicine, University of Miami, Coral Gables, FL, 33146, USA
| | - Sudheesh S Nair
- School of Veterinary Medicine, Ross University, Basseterre, Saint Kitts and Nevis
| | | | - Muni Rubens
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33172, USA.
- Universidad Espíritu Santo, Samborondón, Ecuador.
| |
Collapse
|
3
|
Wu N, Wang J, Fan M, Liang Y, Wei Qi X, Deng F, Zeng F. Non-glycanated ΔDCN isoform in muscle invasive bladder cancer mediates cancer stemness and gemcitabine resistance. Cell Oncol (Dordr) 2024; 47:2163-2181. [PMID: 39466536 DOI: 10.1007/s13402-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The small leucine-rich proteoglycan decorin (DCN) is recognized for its diverse roles in tissue homeostasis and malignant progression. Nevertheless, the regulatory effects of DCN on bladder cancer stem cells (BCSCs) and the underlying mechanisms in muscle-invasive bladder cancer (MIBC) remain to be elucidated. METHODS The study obtained data (including scRNA-seq, clinicopathological characteristics, and survival) were acquired from TCGA and GEO. The BCSCs were cultured by enriching the suspension culture in a serum-free medium, followed by flow cytometry sorting. Overexpression/knockdown was constructed by utilizing lentivirus. The surface biomarkers of cancer stem cells were identified via flow cytometry. Cell proliferation and self-renewal were evaluated by CCK8 and Sphere formation assays, and in vivo tumor growth was evaluated with subcutaneous xenografts. RESULTS Total DCN expression was significantly elevated in muscle-invasive bladder cancer (MIBC) and was associated with poor prognosis. The ΔDCN isoform, which lacks glycosylation sites, was identified in bladder cancer stem cells (BCSCs) derived from clinical tissue samples and bladder cancer cell lines. Suppression of ΔDCN expression resulted in a reduction of BCSC stemness. Both in vitro and in vivo experiments indicated that overexpression of full-length DCN inhibited stemness within the extracellular matrix. Conversely, overexpression of ΔDCN and the introduction of exogenous recombinant decorin protein in ΔDCN-knockdown BCSC-SW780 cell lines enhanced stemness within the cytoplasm. The ΔDCN isoform exhibited resistance to gemcitabine chemotherapy in vitro. CONCLUSION Non-glycanated ΔDCN isoforms were identified in bladder cancer stem cells (BCSCs), where they exhibited differential cytoplasmic localization and promoted oncogenic effects by inducing a stemness phenotype and conferring resistance to gemcitabine chemotherapy. These oncogenic effects are in stark contrast to the anti-tumor functions of glycosylated DCN in the extracellular matrix. The ratio of ΔDCN isoforms to glycosylated DCN is pivotal in predicting tumor progression and therapeutic resistance.
Collapse
Affiliation(s)
- Nisha Wu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, P.R. China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, Scientific Research Center, Department of Biobank, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, P.R. China
| | - Mingming Fan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanling Liang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Wei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, P.R. China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Fangyin Zeng
- Department of Clinical Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Tubben A, Markousis-Mavrogenis G, Meems LMG, van Essen BJ, Baumhove L, Berends M, Tingen HSA, Bijzet J, Hazenberg BPC, Voors AA, van Veldhuisen DJ, Slart RHJA, Nienhuis HLA, van der Meer P. Circulating ECM proteins decorin and alpha-L-iduronidase differentiate ATTRwt-CM from ATTRwt-negative HFpEF/HFmrEF. Cardiovasc Res 2024; 120:1727-1736. [PMID: 39288026 PMCID: PMC11587557 DOI: 10.1093/cvr/cvae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 09/19/2024] Open
Abstract
AIMS Wild-type transthyretin cardiac amyloidosis (ATTRwt-CM) is an under-recognized aetiology of heart failure (HF), necessitating early detection for timely treatment. Our study aimed to differentiate patients with ATTRwt-CM from ATTRwt-negative HFpEF/HFmrEF patients by identifying and validating circulating protein biomarkers. In addition, we measured the same biomarkers in patients with cardiomyopathy due to light chain amyloidosis (AL)-CM to gain disease-specific insights. METHODS AND RESULTS In this observational study, serum concentrations of 363 protein biomarkers were measured in a discovery cohort consisting of 73 ATTRwt-CM, 55 AL-CM, and 59 ATTRwt-negative HFpEF/HFmrEF patients, using multiplex proximity extension assays. Sparse partial least squares analyses showed overlapping ATTRwt-CM and AL-CM biomarker profiles with clear visual differentiation from ATTRwt-negative patients. Pathway analyses with g:Profiler revealed significantly up-regulated proteoglycans (PG) and cell adhesion pathways in both ATTRwt-CM and AL-CM. Penalized regression analysis revealed that the proteoglycan decorin (DCN), lysosomal hydrolase alpha-L-iduronidase (IDUA) and glycosyl hydrolase galactosidase β-1 (GLB-1) most effectively distinguished ATTRwt-CM from ATTRwt-negative patients (R2 = 0.71). In a prospective validation cohort of 35 ATTRwt-CM patients and 25 ATTRwt-negative patients, DCN and IDUA significantly predicted ATTRwt-CM in the initial analysis (DCN: OR 3.3, IDUA: OR 0.4). While DCN remained significant after correcting for echocardiographic parameters, IDUA did not. DCN showed moderate discriminative ability (AUC, 0.74; 95% CI, 0.61-0.87; sensitivity, 0.91; specificity, 0.52) as did IDUA (AUC, 0.78; 95% CI, 0.65-0.91; sensitivity, 0.91; specificity, 0.61). A model combining clinical factors (AUC 0.92) outperformed DCN but not IDUA, a combination of the biomarkers was not significantly better. Neither DCN nor IDUA correlated with established disease markers. CONCLUSION ATTRwt-CM has a distinctly different biomarker profile compared with HFpEF/HFmrEF, while ATTRwt-CM patients share a similar biomarker profile with AL-CM patients characterized by up-regulation of proteoglycans and cell-adhesion pathways. The biomarkers DCN and IDUA show the potential to serve as an initial screening tool for ATTTRwt-CM. Further research is needed to determine the clinical usefulness of these and other extracellular matrix components in identifying ATTRwt-CM.
Collapse
Affiliation(s)
- Alwin Tubben
- Department of Cardiology, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
| | | | - Laura M G Meems
- Department of Cardiology, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Bart J van Essen
- Department of Cardiology, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Milou Berends
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
- Department of Internal Medicine, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Hendrea S A Tingen
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Johan Bijzet
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
- Department of Laboratory Medicine, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Bouke P C Hazenberg
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
- Department of Internal Medicine, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Riemer H J A Slart
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Hans L A Nienhuis
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
- Department of Internal Medicine, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Centre Groningen, 9713GZ Groningen, The Netherlands
- Amyloidosis Centre of Expertise, 9713GZ Groningen, The Netherlands
| |
Collapse
|
5
|
Chen C, Guo S, Chai W, Yang J, Yang Y, Chen G, Rao H, Ma Y, Bai S. A comprehensive genome-based analysis identifies the anti-cancerous role of the anoikis-related gene ADH1A in modulating the pathogenesis of breast cancer. Mol Genet Genomics 2024; 299:108. [PMID: 39531174 DOI: 10.1007/s00438-024-02200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer (BC), a widespread and lethal neoplasm, is irrespective of the subtype of BC. Metastasis remains a crucial determinant for unfavorable outcome. The identification of novel diagnostic markers is instrumental in optimizing the treatment regime for BC. The direct correlation between anoikis and the progression/outcome of BC is well established. Nevertheless, the contribution of anoikis-related genes (ARGs) in BC remains obscure at present. We implemented the METABRIC dataset to scrutinize and assess differentially expressed ARGs in BC versus healthy breast tissues. An unsupervised consensus clustering approach for ARGs was employed to classify patients into diverse subtypes. ESTIMATE algorithms were utilized to assess immune infiltrative patterns. Prognostic gene expression patterns were derived from LASSO regression and univariate COX regression analysis. Subsequently, these signatures underwent examination via use of the Kaplan-Meier survival curve. 6 pairs of fresh tissue specimens (tumor and adjacent non-tumor) were employed to assess the expression of 7 ARGs genes via qPCR. Notably, DCN and FOS were not expressed in BC tissue, which had been excluded in our subsequent experiments. Also, among remaining 5 ARGs, solely the expression of ADH1A demonstrated a statistically remarkable disparity between freshly collected cancer tissues and the adjacent ones. ADH1A-overexpressed and ADH1A-sh vectors were transfected into MCF-7 and MCF-7-AR cell lines, respectively. The expression status of FABP4, CALML5, ADH1A, C1orf106, CIDEC, β-catenin, N-cadherin, and Vimentin in the clinical samples were scrutinized using RT-qPCR and western blotting techniques. Migration and invasion through transwell chambers were employed to assess the migratory and invasive potential of the cells. Detailed evaluation of cell proliferation was conducted utilizing a Cell Counting Kit-8 (CCK-8) assay. The apoptotic index of the cells was determined by flow cytometry analysis. An innovative anoikis-associated signature consisting of seven genes, namely ADH1A, DCN, CIEDC, FABP4, FOS, CALML5, and C1orf106, was devised to stratify BC patients into high- and low-risk cohorts. This unique risk assessment model, formulated via the distinctive signature approach, has been validated as an independent prognostic indicator. Additional analysis demonstrated that distinct risk subtypes manifested variances in the tumor microenvironment and drug sensitivities. Suppression of ADH1A enhanced the migratory and invasive capacities and reduced these tumorigenesis-related protein levels, underscoring the prognostic role of ADH1A in the progression of BC. Through our meticulous study, we have elucidated the possible molecular markers and clinical implications of ARGs in BC. Our model, which incorporate seven ARGs, has proven to accurately forecast the survival outcomes of BC patients. Moreover, the thorough molecular study of ADH1A has augmented our comprehension of ARGs in BC and opened a novel avenue for guiding personalized and precise therapeutic interventions for BC patients.
Collapse
Affiliation(s)
- Cheng Chen
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Shan Guo
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Wenying Chai
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Jun Yang
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Ying Yang
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Guimin Chen
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Haishan Rao
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Yun Ma
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China
| | - Song Bai
- The First Affiliated Hospital of Kunming Medical University, Xichang Road No. 295, Kunming, 650032, Yunnan, China.
| |
Collapse
|
6
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
7
|
Gáspár R, Diószegi P, Nógrádi-Halmi D, Erdélyi-Furka B, Varga Z, Kahán Z, Csont T. The Proteoglycans Biglycan and Decorin Protect Cardiac Cells against Irradiation-Induced Cell Death by Inhibiting Apoptosis. Cells 2024; 13:883. [PMID: 38786104 PMCID: PMC11119486 DOI: 10.3390/cells13100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Radiation-induced heart disease (RIHD), a common side effect of chest irradiation, is a primary cause of mortality among patients surviving thoracic cancer. Thus, the development of novel, clinically applicable cardioprotective agents which can alleviate the harmful effects of irradiation on the heart is of great importance in the field of experimental oncocardiology. Biglycan and decorin are structurally related small leucine-rich proteoglycans which have been reported to exert cardioprotective properties in certain cardiovascular pathologies. Therefore, in the present study we aimed to examine if biglycan or decorin can reduce radiation-induced damage of cardiomyocytes. A single dose of 10 Gray irradiation was applied to induce radiation-induced cell damage in H9c2 cardiomyoblasts, followed by treatment with either biglycan or decorin at various concentrations. Measurement of cell viability revealed that both proteoglycans improved the survival of cardiac cells post-irradiation. The cardiocytoprotective effect of both biglycan and decorin involved the alleviation of radiation-induced proapoptotic mechanisms by retaining the progression of apoptotic membrane blebbing and lowering the number of apoptotic cell nuclei and DNA double-strand breaks. Our findings provide evidence that these natural proteoglycans may exert protection against radiation-induced damage of cardiac cells.
Collapse
Affiliation(s)
- Renáta Gáspár
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (R.G.); (P.D.); (D.N.-H.); (B.E.-F.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Petra Diószegi
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (R.G.); (P.D.); (D.N.-H.); (B.E.-F.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Nógrádi-Halmi
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (R.G.); (P.D.); (D.N.-H.); (B.E.-F.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Barbara Erdélyi-Furka
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (R.G.); (P.D.); (D.N.-H.); (B.E.-F.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Varga
- Department of Oncotherapy, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Zsuzsanna Kahán
- Department of Oncotherapy, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Tamás Csont
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (R.G.); (P.D.); (D.N.-H.); (B.E.-F.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
8
|
Aljagthmi WA, Alasmari MA, Daghestani MH, Al-Kharashi LA, Al-Mohanna FH, Aboussekhra A. Decorin (DCN) Downregulation Activates Breast Stromal Fibroblasts and Promotes Their Pro-Carcinogenic Effects through the IL-6/STAT3/AUF1 Signaling. Cells 2024; 13:680. [PMID: 38667295 PMCID: PMC11049637 DOI: 10.3390/cells13080680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Decorin (DCN), a member of the small leucine-rich proteoglycan gene family, is secreted from stromal fibroblasts with non-cell-autonomous anti-breast-cancer effects. Therefore, in the present study, we sought to elucidate the function of decorin in breast stromal fibroblasts (BSFs). We first showed DCN downregulation in active cancer-associated fibroblasts (CAFs) compared to their adjacent tumor counterpart fibroblasts at both the mRNA and protein levels. Interestingly, breast cancer cells and the recombinant IL-6 protein, both known to activate fibroblasts in vitro, downregulated DCN in BSFs. Moreover, specific DCN knockdown in breast fibroblasts modulated the expression/secretion of several CAF biomarkers and cancer-promoting proteins (α-SMA, FAP- α, SDF-1 and IL-6) and enhanced the invasion/proliferation abilities of these cells through activation of the STAT3/AUF1 signaling. Furthermore, DCN-deficient fibroblasts promoted the epithelial-to-mesenchymal transition and stemness processes in BC cells in a paracrine manner, which increased their resistance to cisplatin. These DCN-deficient fibroblasts also enhanced angiogenesis and orthotopic tumor growth in mice in a paracrine manner. On the other hand, ectopic expression of DCN in CAFs suppressed their active features and their paracrine pro-carcinogenic effects. Together, the present findings indicate that endogenous DCN suppresses the pro-carcinogenic and pro-metastatic effects of breast stromal fibroblasts.
Collapse
Affiliation(s)
- Wafaa A. Aljagthmi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Manal A. Alasmari
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Maha H. Daghestani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Layla A. Al-Kharashi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Falah H. Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| |
Collapse
|
9
|
Neill T, Xie C, Iozzo RV. Decorin evokes reversible mitochondrial depolarization in carcinoma and vascular endothelial cells. Am J Physiol Cell Physiol 2022; 323:C1355-C1373. [PMID: 36036446 PMCID: PMC9602711 DOI: 10.1152/ajpcell.00325.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Decorin, a small leucine-rich proteoglycan with multiple biological functions, is known to evoke autophagy and mitophagy in both endothelial and cancer cells. Here, we investigated the effects of soluble decorin on mitochondrial homeostasis using live cell imaging and ex vivo angiogenic assays. We discovered that decorin triggers mitochondrial depolarization in triple-negative breast carcinoma, HeLa, and endothelial cells. This bioactivity was mediated by the protein core in a time- and dose-dependent manner and was specific for decorin insofar as biglycan, the closest homolog, failed to trigger depolarization. Mechanistically, we found that the bioactivity of decorin to promote depolarization required the MET receptor and its tyrosine kinase. Moreover, two mitochondrial interacting proteins, mitostatin and mitofusin 2, were essential for downstream decorin effects. Finally, we found that decorin relied on the canonical mitochondrial permeability transition pore to trigger tumor cell mitochondrial depolarization. Collectively, our study implicates decorin as a soluble outside-in regulator of mitochondrial dynamics.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Christopher Xie
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Dong Y, Zhong J, Dong L. The Role of Decorin in Autoimmune and Inflammatory Diseases. J Immunol Res 2022; 2022:1283383. [PMID: 36033387 PMCID: PMC9402370 DOI: 10.1155/2022/1283383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Decorin is an extracellular matrix protein that belongs to the family of small leucine-rich proteoglycans. As a matrix protein, the first discovered role of decorin is participating in collagen fibril formation. Many other functions of decorin in various biological processes have been subsequently identified. Decorin is involved in an extensive signaling network and can interact with other extracellular matrix components, growth factors, receptor tyrosine kinases, and various proteases. Decorin has been shown to be involved in wound repair, cell cycle, angiogenesis, tumor metastasis, and autophagy. Recent evidence indicates that it also plays a role in immune regulation and inflammatory diseases. This review summarizes the characteristics of decorin in immune and inflammatory diseases, including inflammatory bowel disease (IBD), Sjögren's syndrome (SS), chronic obstructive pulmonary disease (COPD), IgA nephropathy, rheumatoid arthritis (RA), spondyloarthritis (SpA), osteoarthritis, multiple sclerosis (MS), idiopathic inflammatory myopathies (IIM), and systemic sclerosis (SSc) and discusses the potential role in these disorders.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Neill T, Iozzo RV. The Role of Decorin Proteoglycan in Mitophagy. Cancers (Basel) 2022; 14:804. [PMID: 35159071 PMCID: PMC8834502 DOI: 10.3390/cancers14030804] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|