1
|
Zhuang M, Zhu S, Su L, Liu L, Ji M, Xiao J, Guan Y, Dai C, Liu J, Yang L, Pu H. SNTA1 inhibits the PI3K/AKT signaling pathway leading to increased mitochondrial dysfunction and arrhythmia caused by diacetylmorphine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117212. [PMID: 39437515 DOI: 10.1016/j.ecoenv.2024.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Diacetylmorphine (DA) abuse can result in severe arrhythmias and even sudden death. Although previous research has connected ion channel proteins to arrhythmia occurrences, the precise mechanism underlying DA-induced arrhythmias remains poorly understood. This study conducted a comprehensive analysis of the myocardial toxicity of DA by applying proteomic and histopathological approaches and investigated the underlying mechanisms using in vitro experiments. In vivo experiments confirmed that DA induces cardiac arrhythmias, as evidenced by electrocardiographic analyses of rats. Additionally, Masson staining, wheat germ agglutinin staining (WGA) staining, and western blotting of myocardial tissues revealed significant myocardial damage. Tandem mass tag proteomics analysis identified syntrophin alpha 1 (SNTA1) as a pivotal target molecule linked to myocardial toxicity. Ex vivo experiments showed specific upregulation of SNTA1 in rat cardiomyocytes following DA exposure. Furthermore, in vitro experiments indicated that DA caused disruption of potassium channels and activated the arrhythmia-related PI3K/AKT signaling pathway. Silencing and overexpression studies of SNTA1 highlighted its role in ion channel abnormalities and that of the PI3K/AKT signaling pathway expression in cardiomyocytes, underscoring the crucial role of mitochondrial function in cardiac arrhythmias. This research indicates that SNTA1 is integral to arrhythmia development by influencing the PI3K/AKT signaling pathway, leading to mitochondrial dysfunction and ion channel irregularities. SNTA1 is a potential therapeutic target for DA-induced arrhythmias. This study enhances our understanding of DA-induced myocardial toxicity and offers valuable insights for assessing the risks of DA exposure in humans.
Collapse
Affiliation(s)
- Mengjie Zhuang
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Sensen Zhu
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Liping Su
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Li Liu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Min Ji
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jinling Xiao
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Yaling Guan
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Chenlu Dai
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Jingyu Liu
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China
| | - Long Yang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan 528000, China.
| | - Hongwei Pu
- Xinjiang Medical University, School of Basic Medical Science, Urumqi 830017, China; Key Laboratory of Forensic Medicine, Xinjiang Medical University, Xinjiang, China; Department of Discipline Construction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.
| |
Collapse
|
2
|
Le Quilliec E, LeBlanc CA, Neuilly O, Xiao J, Younes R, Altuntas Y, Xiong F, Naud P, Villeneuve L, Sirois MG, Tanguay JF, Tardif JC, Hiram R. Atrial cardiomyocytes contribute to the inflammatory status associated with atrial fibrillation in right heart disease. Europace 2024; 26:euae082. [PMID: 38546222 PMCID: PMC11000822 DOI: 10.1093/europace/euae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
AIMS Right heart disease (RHD), characterized by right ventricular (RV) and atrial (RA) hypertrophy, and cardiomyocytes' (CM) dysfunctions have been described to be associated with the incidence of atrial fibrillation (AF). Right heart disease and AF have in common, an inflammatory status, but the mechanisms relating RHD, inflammation, and AF remain unclear. We hypothesized that right heart disease generates electrophysiological and morphological remodelling affecting the CM, leading to atrial inflammation and increased AF susceptibility. METHODS AND RESULTS Pulmonary artery banding (PAB) was surgically performed (except for sham) on male Wistar rats (225-275 g) to provoke an RHD. Twenty-one days (D21) post-surgery, all rats underwent echocardiography and electrophysiological studies (EPS). Optical mapping was performed in situ, on Langendorff-perfused hearts. The contractility of freshly isolated CM was evaluated and recorded during 1 Hz pacing in vitro. Histological analyses were performed on formalin-fixed RA to assess myocardial fibrosis, connexin-43 levels, and CM morphology. Right atrial levels of selected genes and proteins were obtained by qPCR and Western blot, respectively. Pulmonary artery banding induced severe RHD identified by RV and RA hypertrophy. Pulmonary artery banding rats were significantly more susceptible to AF than sham. Compared to sham RA CM from PAB rats were significantly elongated and hypercontractile. Right atrial CM from PAB animals showed significant augmentation of mRNA and protein levels of pro-inflammatory interleukin (IL)-6 and IL1β. Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) and junctophilin-2 were decreased in RA CM from PAB compared to sham rats. CONCLUSIONS Right heart disease-induced arrhythmogenicity may occur due to dysfunctional SERCA2a and inflammatory signalling generated from injured RA CM, which leads to an increased risk of AF.
Collapse
Affiliation(s)
- Ewen Le Quilliec
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Charles-Alexandre LeBlanc
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Orlane Neuilly
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Jiening Xiao
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Rim Younes
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Yasemin Altuntas
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Feng Xiong
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Patrice Naud
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Louis Villeneuve
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Martin G Sirois
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Jean-François Tanguay
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Roddy Hiram
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| |
Collapse
|
3
|
Han Q, Qiu S, Hu H, Li W, Li X. Role of Caveolae family-related proteins in the development of breast cancer. Front Mol Biosci 2023; 10:1242426. [PMID: 37828916 PMCID: PMC10565104 DOI: 10.3389/fmolb.2023.1242426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Breast cancer has become the most significant malignant tumor threatening women's lives. Caveolae are concave pits formed by invagination of the plasma membrane that participate in many biological functions of the cell membrane, such as endocytosis, cell membrane assembly, and signal transduction. In recent years, Caveolae family-related proteins have been found to be closely related to the occurrence and development of breast cancer. The proteins associated with the Caveolae family-related include Caveolin (Cav) and Cavins. The Cav proteins include Cav-1, Cav-2 and Cav-3, among which Cav-1 has attracted the most attention as a tumor suppressor and promoting factor affecting the proliferation, apoptosis, migration, invasion and metastasis of breast cancer cells. Cav-2 also has dual functions of inhibiting and promoting cancer and can be expressed in combination with Cav-1 or play a regulatory role alone. Cav-3 has been less studied in breast cancer, and the loss of its expression can form an antitumor microenvironment. Cavins include Cavin-1, Cavin-2, Cavin-3 and Cavin-4. Cavin-1 inhibits Cav-1-induced cell membrane tubule formation, and its specific role in breast cancer remains controversial. Cavin-2 acts as a breast cancer suppressor, inhibiting breast cancer progression by blocking the transforming growth factor (TGF-β) signaling pathway. Cavin-3 plays an anticancer role in breast cancer, but its specific mechanism of action is still unclear. The relationship between Cavin-4 and breast cancer is unclear. In this paper, the role of Caveolae family-related proteins in the occurrence and development of breast cancer and their related mechanisms are discussed in detail to provide evidence supporting the further study of Caveolae family-related proteins as potential targets for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Qinyu Han
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| | - Shi Qiu
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| | - Huiwen Hu
- Department of the First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| | - Xiangqi Li
- Department of Breast Center, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, Chinaa
| |
Collapse
|
4
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
5
|
Cheng J, Wei W, Fang Y, Zhou N, Wu Q, Zhao Q. Sudden cardiac death and cardiac sodium channel diseases. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2022. [DOI: 10.4103/jfsm.jfsm_123_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|