1
|
Kapapa T, Wernheimer V, Hoffmann A, Merz T, Zink F, Wolfschmitt EM, McCook O, Vogt J, Wepler M, Messerer DAC, Hartmann C, Scheuerle A, Mathieu R, Mayer S, Gröger M, Denoix N, Clazia E, Radermacher P, Röhrer S, Datzmann T. Unravelling Secondary Brain Injury: Insights from a Human-Sized Porcine Model of Acute Subdural Haematoma. Cells 2024; 14:17. [PMID: 39791718 PMCID: PMC11720468 DOI: 10.3390/cells14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death. Because of the individual nature of the trauma (brain, circumstances and forces), humans experience individual TBIs. This makes it difficult to generalise therapies. Clinical management issues such as whether intracranial pressure (ICP), cerebral perfusion pressure (CPP) or decompressive craniectomy improve patient outcome remain partly unanswered. Experimental drug approaches for the treatment of secondary brain injury (SBI) have not found clinical application. The complex, cellular and molecular pathways of SBI remain incompletely understood, and there are insufficient experimental (animal) models that reflect the pathophysiology of human TBI to develop translational therapeutic approaches. Therefore, we investigated different injury patterns after acute subdural hematoma (ASDH) as TBI in a post-hoc approach to assess the impact on SBI in a long-term, human-sized porcine TBI animal model. Post-mortem brain tissue analysis, after ASDH, bilateral ICP, CPP, cerebral oxygenation and temperature monitoring, and biomarker analysis were performed. Extracerebral, intraparenchymal-extraventricular and intraventricular blood, combined with brainstem and basal ganglia injury, influenced the experiment and its outcome. Basal ganglia injury affects the duration of the experiment. Recognition of these different injury patterns is important for translational interpretation of results in this animal model of SBI after TBI.
Collapse
Affiliation(s)
- Thomas Kapapa
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Vanida Wernheimer
- Department of Neurosurgery, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Andrea Hoffmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Tamara Merz
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Fabia Zink
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Eva-Maria Wolfschmitt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Oscar McCook
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Josef Vogt
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Martin Wepler
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | | | - Claire Hartmann
- Department of Anaesthesiology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Angelika Scheuerle
- Section Neuropathology, University Hospital Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - René Mathieu
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Simon Mayer
- Department of Neurosurgery, Military Hospital Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany
| | - Michael Gröger
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Nicole Denoix
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Enrico Clazia
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| | - Stefan Röhrer
- Department of Neurosurgery, Ostalb-Hospital Aalen, Im Kälblesrain 1, 73430 Aalen, Germany
| | - Thomas Datzmann
- Institute of Anaesthesiologic Pathophysiology and Process Development, University Hospital Ulm, Helmholtzstrasse 8/1, 89081 Ulm, Germany
| |
Collapse
|
2
|
Li D, Liu S, Yu T, Liu Z, Sun S, Bragin D, Shirokov A, Navolokin N, Bragina O, Hu Z, Kurths J, Fedosov I, Blokhina I, Dubrovski A, Khorovodov A, Terskov A, Tzoy M, Semyachkina-Glushkovskaya O, Zhu D. Photostimulation of brain lymphatics in male newborn and adult rodents for therapy of intraventricular hemorrhage. Nat Commun 2023; 14:6104. [PMID: 37775549 PMCID: PMC10541888 DOI: 10.1038/s41467-023-41710-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
Intraventricular hemorrhage is one of the most fatal forms of brain injury that is a common complication of premature infants. However, the therapy of this type of hemorrhage is limited, and new strategies are needed to reduce hematoma expansion. Here we show that the meningeal lymphatics is a pathway to remove red blood cells from the brain's ventricular system of male human, adult and newborn rodents and is a target for non-invasive transcranial near infrared photobiomodulation. Our results uncover the clinical significance of phototherapy of intraventricular hemorrhage in 4-day old male rat pups that have the brain similar to a preterm human brain. The course of phototherapy in newborn rats provides fast recovery after intraventricular hemorrhage due to photo-improvements of lymphatic drainage and clearing functions. These findings shed light on the mechanisms of phototherapy of intraventricular hemorrhage that can be a clinically relevant technology for treatment of neonatal intracerebral bleedings.
Collapse
Affiliation(s)
- Dongyu Li
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Shaojun Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Silin Sun
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Denis Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
- Department of Neurology University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Alexander Shirokov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Nikita Navolokin
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Saratov State Medical University, B. Kazachya str., 112, Saratov, 410012, Russia
| | - Olga Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM, 87108, USA
| | - Zhengwu Hu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
- School of Optical Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Jürgen Kurths
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473, Potsdam, Germany
- Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya 2, building 4, 119435, Moscow, Russia
| | - Ivan Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Inna Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | | | | | - Andrey Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Maria Tzoy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Oxana Semyachkina-Glushkovskaya
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia.
- Physics Department, Humboldt University, Newtonstrasse 15, 12489, Berlin, Germany.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Angelova P, Kehayov I, Ordonez-Rubiano EG, Figueredo LF, Zlatareva D. Long-term Tractography Evaluation of Corpus Callosum Impairment After Severe Traumatic Brain Injury in Patients With Isolated Intraventricular Hemorrhage on Admission CT: Two Illustrative Cases and a Literature Review. Korean J Neurotrauma 2023; 19:249-257. [PMID: 37431372 PMCID: PMC10329887 DOI: 10.13004/kjnt.2023.19.e27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 04/08/2023] [Indexed: 07/12/2023] Open
Abstract
Severe traumatic brain injury (TBI) is often associated with diffuse axonal injury. Diffuse axonal injury affecting the corpus callosum may present with intraventricular hemorrhage on baseline computed tomography (CT) scan. Posttraumatic corpus callosum damage is a chronic condition that can be diagnosed over the long term using various magnetic resonance imaging (MRI) sequences. Here, we present two cases of severe survivors of TBI with isolated intraventricular hemorrhage detected on an initial CT scan. After acute trauma management, long-term follow-up was performed. Diffusion tensor imaging and subsequent tractography revealed a significant decrease in the fractional anisotropy values and the number of corpus callosum fibers compared with those in healthy control patients. This study presents a possible correlation between traumatic intraventricular hemorrhage on admission CT and long-term corpus callosum impairment detected on MRI in patients with severe head injury by presenting demonstrative cases and conducting a literature review.
Collapse
Affiliation(s)
- Polina Angelova
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ivo Kehayov
- Department of Neurosurgery, Faculty of Medicine, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Edgar G. Ordonez-Rubiano
- Department of Neurosurgery, Hospital de San José – Sociedad de Cirugía de Bogotá, Fundación Universitaria de Ciencias de la Salud, Bogotá D.C., Colombia
| | - Luisa F. Figueredo
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Dora Zlatareva
- Department of Diagnostic Imaging, Medical University of Sofia, Sofia, Bulgaria
- Research Complex for Translational Neuroscience, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
4
|
Scurfield AK, Wilson MD, Gurkoff G, Martin R, Shahlaie K. Identification of Demographic and Clinical Prognostic Factors in Traumatic Intraventricular Hemorrhage. Neurocrit Care 2023; 38:149-157. [PMID: 36050537 PMCID: PMC9957945 DOI: 10.1007/s12028-022-01587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND The presence of traumatic intraventricular hemorrhage (tIVH) following traumatic brain injury (TBI) is associated with worse neurological outcome. The mechanisms by which patients with tIVH have worse outcome are not fully understood and research is ongoing, but foundational studies that explore prognostic factors within tIVH populations are also lacking. This study aimed to further identify and characterize demographic and clinical variables within a subset of patients with TBI and tIVH that may be implicated in tIVH outcome. METHODS In this observational study, we reviewed a large prospective TBI database to determine variables present on admission that predicted neurological outcome 6 months after injury. A review of 7,129 patients revealed 211 patients with tIVH on admission and 6-month outcome data. Hypothesized risk factors were tested in univariate analyses with significant variables (p < 0.05) included in logistic and linear regression models. Following the addition of either the Rotterdam computed tomography or Glasgow Coma Scale (GCS) score, we employed a backward selection process to determine significant variables in each multivariate model. RESULTS Our study found that that hypotension (odds ratio [OR] = 0.35, 95% confidence interval [CI] = 0.13-0.94, p = 0.04) and the hemoglobin level (OR = 1.33, 95% CI = 1.09-1.63, p = 0.006) were significant predictors in the Rotterdam model, whereas only the hemoglobin level (OR = 1.29, 95% CI = 1.06-1.56, p = 0.01) was a significant predictor in the GCS model. CONCLUSIONS This study represents one of the largest investigations into prognostic factors for patients with tIVH and demonstrates that admission hemoglobin level and hypotension are associated with outcomes in this patient population. These findings add value to established prognostic scales, could inform future predictive modeling studies, and may provide potential direction in early medical management of patients with tIVH.
Collapse
Affiliation(s)
- Abby K Scurfield
- Frank H. Netter M.D. School of Medicine, Quinnipiac University, 830 Orange Street, New Haven, CT, 06511, USA
| | - Machelle D Wilson
- Division of Biostatistics, Department of Public Health Sciences, Davis Clinical and Translational Science Center, University of California, 2921 Stockton Blvd., Suite 1400, Sacramento, CA, 95817, USA
| | - Gene Gurkoff
- Department of Neurological Surgery, University of California, 4860 Y Street, Suite 3740,, 95817, Davis, Sacramento, CA, USA
| | - Ryan Martin
- Department of Neurological Surgery, University of California, 4860 Y Street, Suite 3740,, 95817, Davis, Sacramento, CA, USA
- Department of Neurology, University of California, 4860 Y Street, Suite 3740,, Davis, Sacramento, CA, USA
| | - Kiarash Shahlaie
- Department of Neurological Surgery, University of California, 4860 Y Street, Suite 3740,, 95817, Davis, Sacramento, CA, USA.
| |
Collapse
|
5
|
Understanding Acquired Brain Injury: A Review. Biomedicines 2022; 10:biomedicines10092167. [PMID: 36140268 PMCID: PMC9496189 DOI: 10.3390/biomedicines10092167] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/26/2022] [Indexed: 01/19/2023] Open
Abstract
Any type of brain injury that transpires post-birth is referred to as Acquired Brain Injury (ABI). In general, ABI does not result from congenital disorders, degenerative diseases, or by brain trauma at birth. Although the human brain is protected from the external world by layers of tissues and bone, floating in nutrient-rich cerebrospinal fluid (CSF); it remains susceptible to harm and impairment. Brain damage resulting from ABI leads to changes in the normal neuronal tissue activity and/or structure in one or multiple areas of the brain, which can often affect normal brain functions. Impairment sustained from an ABI can last anywhere from days to a lifetime depending on the severity of the injury; however, many patients face trouble integrating themselves back into the community due to possible psychological and physiological outcomes. In this review, we discuss ABI pathologies, their types, and cellular mechanisms and summarize the therapeutic approaches for a better understanding of the subject and to create awareness among the public.
Collapse
|