1
|
Fortuna V, Lima J, Oliveira GF, Oliveira YS, Getachew B, Nekhai S, Aschner M, Tizabi Y. Ferroptosis as an emerging target in sickle cell disease. Curr Res Toxicol 2024; 7:100181. [PMID: 39021403 PMCID: PMC11252799 DOI: 10.1016/j.crtox.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobin disorder marked by red blood cell sickling, resulting in severe anemia, painful episodes, extensive organ damage, and shortened life expectancy. In SCD, increased iron levels can trigger ferroptosis, a specific type of cell death characterized by reactive oxygen species (ROS) and lipid peroxide accumulation, leading to damage and organ impairments. The intricate interplay between iron, ferroptosis, inflammation, and oxidative stress in SCD underscores the necessity of thoroughly understanding these processes for the development of innovative therapeutic strategies. This review highlights the importance of balancing the complex interactions among various factors and exploitation of the knowledge in developing novel therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Vitor Fortuna
- Department of Biochemistry and Biophysics, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Jaqueline Lima
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Gabriel F. Oliveira
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Yasmin S. Oliveira
- Postgraduate Program in Immunology, Health Sciences Institute, Federal University of Bahia, BA 40231-300, Brazil
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Departments of Microbiology and Medicine, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| |
Collapse
|
2
|
Zhu X, Li P, Tang J, Su Y, Xiao M, Xue H, Cai X. A simple and practical solvent system selection strategy for high-speed countercurrent chromatography based on the HPLC polarity parameter model. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4822-4831. [PMID: 36383038 DOI: 10.1039/d2ay01377k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The selection of an appropriate solvent system is the most crucial step in high-speed countercurrent chromatography (HSCCC) separation. The compound polarity plays an important role in HPLC analysis and HSCCC separation, and it can be calculated by the HPLC polarity parameter model and the average polarity of the HSCCC solvent system, respectively. However, flow rates, columns and methanol concentrations of the HPLC experiment can influence the calculation of the compound polarity. Therefore, the applicability and accuracy of the HPLC polarity parameter model still needed to be extensively validated. We chose 14 compounds to conduct the shake-flask experiments and HPLC analysis on, such as apigenin, honokiol, phloridzin and dihydromyricetin. The HPLC analysis results showed that different flow rates and columns have negligible effects on the calculated compound polarities. However, there was a certain variation trend in the calculated polarities with different methanol concentrations. Although the polarity values of some compounds showed a difference between the HPLC analysis and shake-flask experiments, their partition coefficients (K) in the HSCCC solvent systems were still located in the range of 0.5 < K < 2.0. Guided by the HPLC polarity parameter model, the appropriate HSCCC solvent systems for mangosteen peel and Hypericum sampsonii Hance were selected, and the two main components (mangostin and quercetin) were isolated from their extracts, respectively. The separation results showed that the predicted compound polarities were sufficient to meet the HSCCC separation requirements. Meanwhile, this method required only 1 to 2 HPLC analyses with reference compounds, greatly improved the efficiency of the HSCCC solvent system selection, and shortened the experimental time. The polarity parameter model was a fast and efficient analysis method for the selection of an appropriate HSCCC solvent system.
Collapse
Affiliation(s)
- Xiaohan Zhu
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P. R. China.
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Pengcheng Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P. R. China.
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P. R. China.
| | - Yanqi Su
- Medicament Department, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan Caidian People's Hospital, Wuhan 43000, P. R. China.
| | - Mi Xiao
- Medicament Department, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan Caidian People's Hospital, Wuhan 43000, P. R. China.
| | - Hongkun Xue
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P. R. China.
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
3
|
Shi Y, Zheng Y, Bing X, Yuan J. Experimental Study on the Inhibition of Bacteria and Algae by Jussiaea stipulacea Ohwi Extract. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221124775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, plant allelopathy, as a new type of biological algal and/or bacterial inhibition technology, has attracted extensive attention. Eight substances were isolated and identified from Jussiaea stipulacea Ohwi, and five concentration gradients, as well as a control (0, 1.25, 5, 10, 20, and 50 mg/L) were set, with three parallels in each group, and then sampled and detected at 24, 48, 72, and 96 h. When the concentration was 50 mg/L, the inhibition rate of Anabaena was as high as 74.8%, 69.2%, and 70.7% for ursolic acid, kaempferol, and luteolin, respectively. Streptococcus iniae and Aeromonas hydrophila were cultured to a logarithmic phase, and their final concentrations reached 1000, 500, 250, 125, 62.50, 31.25, 15.63, and 7.81 μg/mL. Luteolin and gallic acid showed an inhibitory effect on S iniae and A hydrophila at 1000 μg/mL. We found that allelochemicals also had a certain bacteriostatic effect, among which luteolin has great development potential.
Collapse
Affiliation(s)
- Yulu Shi
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
| | - Yao Zheng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
| | - Xuwen Bing
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, China
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences (CAFS), Wuxi, Jiangsu, China
| | - Julin Yuan
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs; Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|