1
|
Faienza MF, Chiarito M, Aureli A, Buganza R, Corica D, Delvecchio M, De Sanctis L, Fintini D, Grugni G, Licenziati MR, Madeo S, Mozzillo E, Rutigliano I, Valerio G. Lack of correlation between asprosin serum levels and hyperphagic behavior in subjects with prader-Willi Syndrome. J Endocrinol Invest 2025; 48:979-986. [PMID: 39636471 DOI: 10.1007/s40618-024-02511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Individuals with Prader-Willi syndrome (PWS) exhibit hyperphagic behavior, the severity of which varies throughout life. The mechanisms underlying this behavior are still unknown. Asprosin is a new discovered adipokine involved in the regulation of food intake, glucose homeostasis and energy balance. In this study we assessed asprosin serum levels in a cohort of children, adolescents and adults with PWS with the aim to correlate them with hyperphagic behavior, body mass index (BMI) and metabolic parameters, and to evaluate age-related changes. METHODS This cross-sectional study included 87 children and adolescents and 31 adults with PWS. Auxological data, fasting levels of glucose, insulin, total cholesterol, high-density lipoprotein-cholesterol (HDL-C), triglycerides (TG) and asprosin were collected, and the homeostasis model assessment for insulin resistance (HOMA-IR) was determined. The 11-item Italian version of the Hyperphagia Questionnaire (HQ) was administered to the parents/caregivers of the patients to assess hyperphagia. RESULTS Patients were analysed according to age (children < 10 years, adolescents between 10 and 17.9 years, adults ≥ 18 years) or BMI categories [normal weight (NW), overweight (OW), and obesity (OB)]. No significant correlations were found between asprosin levels and cardiometabolic risk factors in the whole cohort. Higher values of asprosin were found in adults compared with adolescents, as well as in the OB group compared to the NW group (p = 0.014). Hyperphagia total score and hyperphagic subdimensions were significantly lower in children compared to adults (p < 0.05). Similarly, hyperphagia total score and hyperphagic subdimensions were significantly lower in the NW group compared to the OB group. Asprosin levels were significantly higher in patients with deletion versus patients with uniparental disomy (p = 0.037). By logistic regression analysis, HQ total score and hyperphagic subdimensions were significantly associated with BMI-SDS independently of age, sex, and asprosin levels. CONCLUSION In conclusion, our data demonstrated higher asprosin levels in PWS individuals with OB compared to NW, while differences by age and sex were inconsistent. The lower levels of hyperphagia, BMI-SDS, and metabolic variables in children with PWS compared to adults underline that prevention of obesity should start very early in life and should be maintained over time.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy.
| | - Mariangela Chiarito
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari "A. Moro", Bari, Italy
| | - Alessia Aureli
- Endocrinology and Diabetology Unit, Pediatric University Department, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Raffaele Buganza
- Pediatric Endocrinology, Department of Public Health and Pediatric Sciences, Regina Margherita Children Hospital, University of Torino, Torino, Italy
| | - Domenico Corica
- Department of Human Pathology of Adulthood and Childhood "G.Barresi", Unit of Pediatrics, University of Messina, Messina, Italy
| | - Maurizio Delvecchio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, L'Aquila, Italy
| | - Luisa De Sanctis
- Pediatric Endocrinology, Department of Public Health and Pediatric Sciences, Regina Margherita Children Hospital, University of Torino, Torino, Italy
| | - Danilo Fintini
- Endocrinology and Diabetology Unit, Pediatric University Department, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Graziano Grugni
- Division of Auxology, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Verbania, Italy
| | - Maria Rosaria Licenziati
- Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Simona Madeo
- Department of Medical and Surgical Sciences for Mother, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Enza Mozzillo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Irene Rutigliano
- Pediatric Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Giuliana Valerio
- Department of Medical, Movement and Wellbeing Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
2
|
Kucharska A, Witkowska-Sędek E, Erazmus M, Artemniak-Wojtowicz D, Krajewska M, Pyrżak B. The Effects of Growth Hormone Treatment Beyond Growth Promotion in Patients with Genetic Syndromes: A Systematic Review of the Literature. Int J Mol Sci 2024; 25:10169. [PMID: 39337654 PMCID: PMC11432634 DOI: 10.3390/ijms251810169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recombinant human growth hormone therapy (rhGH) has been widely accepted as the safe treatment for short stature in children with such genetic syndromes as Prader-Willi syndrome and Turner or Noonan syndrome. Some patients with short stature and rare genetic syndromes are treated with rhGH as growth hormone-deficient individuals or as children born small for their gestational age. After years of experience with this therapy in syndromic short stature, it has been proved that there are some aspects of long-term rhGH treatment beyond growth promotion, which can justify rhGH use in these individuals. This paper summarizes the data of a literature review of the effects of rhGH treatment beyond growth promotion in selected genetic syndromes. We chose three of the most common syndromes, Prader-Willi, Turner, and Noonan, in which rhGH treatment is indicated, and three rarer syndromes, Silver-Russel, Kabuki, and Duchenne muscular dystrophy, in which rhGH treatment is not widely indicated. Many studies have shown a significant impact of rhGH therapy on body composition, resting energy expenditure, insulin sensitivity, muscle tonus, motor function, and mental and behavioral development. Growth promotion is undoubtedly the primary benefit of rhGH therapy; nevertheless, especially with genetic syndromes, the additional effects should also be considered as important indications for this treatment.
Collapse
Affiliation(s)
- Anna Kucharska
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.E.); (D.A.-W.); (M.K.); (B.P.)
| | - Ewelina Witkowska-Sędek
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.E.); (D.A.-W.); (M.K.); (B.P.)
| | | | | | | | | |
Collapse
|
3
|
Farrag M, Ait Eldjoudi D, González-Rodríguez M, Cordero-Barreal A, Ruiz-Fernández C, Capuozzo M, González-Gay MA, Mera A, Lago F, Soffar A, Essawy A, Pino J, Farrag Y, Gualillo O. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne) 2023; 13:1101091. [PMID: 36686442 PMCID: PMC9849689 DOI: 10.3389/fendo.2022.1101091] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Adipose tissue malfunction leads to altered adipokine secretion which might consequently contribute to an array of metabolic diseases spectrum including obesity, diabetes mellitus, and cardiovascular disorders. Asprosin is a novel diabetogenic adipokine classified as a caudamin hormone protein. This adipokine is released from white adipose tissue during fasting and elicits glucogenic and orexigenic effects. Although white adipose tissue is the dominant source for this multitask adipokine, other tissues also may produce asprosin such as salivary glands, pancreatic B-cells, and cartilage. Significantly, plasma asprosin levels link to glucose metabolism, lipid profile, insulin resistance (IR), and β-cell function. Indeed, asprosin exhibits a potent role in the metabolic process, induces hepatic glucose production, and influences appetite behavior. Clinical and preclinical research showed dysregulated levels of circulating asprosin in several metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), polycystic ovarian syndrome (PCOS), non-alcoholic fatty liver (NAFLD), and several types of cancer. This review provides a comprehensive overview of the asprosin role in the etiology and pathophysiological manifestations of these conditions. Asprosin could be a promising candidate for both novel pharmacological treatment strategies and diagnostic tools, although developing a better understanding of its function and signaling pathways is still needed.
Collapse
Affiliation(s)
- Mariam Farrag
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- Euro-Mediterranean Master in neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María González-Rodríguez
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Program in Drug Research and Development, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Program in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Maurizio Capuozzo
- National Health Service, Local Health Authority ASL 3 Napoli Sud, Department of Pharmacy, Naples, Italy
| | - Miguel Angel González-Gay
- Hospital Universitario Marqués de Valdecilla, Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, University of Cantabria, Santander, Cantabria, Spain
| | - Antonio Mera
- SERGAS, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude), IDIS (Instituto de Investigación Sanitaria de Santiago), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ahmed Soffar
- Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amina Essawy
- Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Summers KM, Bush SJ, Davis MR, Hume DA, Keshvari S, West JA. Fibrillin-1 and asprosin, novel players in metabolic syndrome. Mol Genet Metab 2023; 138:106979. [PMID: 36630758 DOI: 10.1016/j.ymgme.2022.106979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Fibrillin-1 is a major component of the extracellular microfibrils, where it interacts with other extracellular matrix proteins to provide elasticity to connective tissues, and regulates the bioavailability of TGFβ family members. A peptide consisting of the C-terminal 140 amino acids of fibrillin-1 has recently been identified as a glucogenic hormone, secreted from adipose tissue during fasting and targeting the liver to release glucose. This fragment, called asprosin, also signals in the hypothalamus to stimulate appetite. Asprosin levels are correlated with many of the pathologies indicative of metabolic syndrome, including insulin resistance and obesity. Previous studies and reviews have addressed the therapeutic potential of asprosin as a target in obesity, diabetes and related conditions without considering mechanisms underlying the relationship between generation of asprosin and expression of the much larger fibrillin-1 protein. Profibrillin-1 undergoes obligatory cleavage at the cell surface as part of its assembly into microfibrils, producing the asprosin peptide as well as mature fibrillin-1. Patterns of FBN1 mRNA expression are inconsistent with the necessity for regulated release of asprosin. The asprosin peptide may be protected from degradation in adipose tissue. We present evidence for an alternative possibility, that asprosin mRNA is generated independently from an internal promoter within the 3' end of the FBN1 gene, which would allow for regulation independent of fibrillin-synthesis and is more economical of cellular resources. The discovery of asprosin opened exciting possibilities for treatment of metabolic syndrome related conditions, but there is much to be understood before such therapies could be introduced into the clinic.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, United Kingdom.
| | - Margaret R Davis
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, Queensland 4102, Australia.
| | - Jennifer A West
- Faculty of Medicine, The University of Queensland, Mayne Medical Building, 288 Herston Road, Herston, Queensland 4006, Australia.
| |
Collapse
|