1
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
2
|
Miraghaee DS, Khalili A, Bayat G, Mousavi Z, Nazari M, Hosseini M, Goudarzvand M, Mazloom R. A single dose of nicotine modulates heart rate variability in rats with induced-ulcerative colitis. Auton Neurosci 2025; 260:103282. [PMID: 40306144 DOI: 10.1016/j.autneu.2025.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/02/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND AND AIMS Nicotine, a widely used toxic substance, has various receptors scattered throughout the body that have shown opposite effects on inflammatory disorders. However, the effects of nicotine on heart rate variability in ulcerative colitis are unclear. Therefore, the present study aimed to determine the effect of acute nicotine injection on heart rate variability in a rat model of ulcerative colitis. METHODS Six male Wistar rat groups, containing vehicle, UC (induction of ulcerative colitis without treatment), and nicotine (0.5, 1, 1.5, and 2 mg/kg), were assessed. First, the rats were anesthetized and the initial electrocardiogram was recorded. Twenty-four hours after the induction of ulcerative colitis with 4 % acetic acid by rectal injection, a second electrocardiogram was recorded. Finally, 15 min after nicotine injection in each group, the last electrocardiogram was recorded. Linear and nonlinear indices of heart rate variability were extracted from the recorded R-R intervals. RESULTS A single injection of nicotine at high doses increased the standard deviation of R-R intervals, root mean square of successive differences between normal heartbeats, ratio of the short-term deviation to the long-term deviation of R-R intervals, and entropy of R-R intervals in ulcerative colitis animals (at least P < 0.05). CONCLUSIONS Acute injection of nicotine at doses 1.5 and 2 mg/kg can improve R-R interval linear indices, balance the ratio of short-term deviation to long-term deviation, and modify the entropy in the induced ulcerative colitis rats. However, further research is needed for the clinical use of acute nicotine injection in ulcerative colitis.
Collapse
Affiliation(s)
- Diba Sadat Miraghaee
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azadeh Khalili
- Department of Physiology-Pharmacology-Medical Physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Department of Physiology-Pharmacology-Medical Physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; DANDRITE, the Danish Research Institute of Translational Neuroscience, Aarhus, Denmark.
| | - Marjan Hosseini
- Department of Physiology-Pharmacology-Medical Physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahdi Goudarzvand
- Department of Physiology-Pharmacology-Medical Physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Roham Mazloom
- Department of Physiology-Pharmacology-Medical Physics, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
dos Santos BLB, da Silva ACA, Severo JS, de Sousa Barbosa B, de Sousa MC, dos Santos Moreira FA, de Sousa LE, Soares HS, de Freitas AKL, Torres-Leal FL, Correia-de-Sá P, dos Santos AA, da Silva MTB. Physical Exercise Alleviates Oxidative Stress and Autonomic Dysregulation in a Rat Model of Inflammatory Bowel Disease. Antioxidants (Basel) 2025; 14:328. [PMID: 40227268 PMCID: PMC11939737 DOI: 10.3390/antiox14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Inflammatory bowel disease (IBD) induces immunological and autonomic imbalances. Exercise is a beneficial strategy for controlling IBD symptoms. We investigated the role of exercise on gastrointestinal (GI) motility changes and autonomic parameters in rats with ileitis. Rats were divided into control, ileitis, and exercise+ileitis groups. Ileitis was induced by TNBS (40 mM, intraileally). The exercise was swimming (1 h/day/4 weeks, 5%/bw). We assessed eating behaviour and oxidative stress. Body composition was assessed by bioimpedance. Autonomic balance and ECG parameters were measured by an electrocardiogram (ECG). Gastrointestinal motility was evaluated using the phenol red technique. In terms of body composition, total body water (TBW), body mass index (BMI), and fat-free mass (FFM) were higher in the ileitis group (216.80 ± 11.44 mL; 24.09 ± 2.15 g/cm2; 287.1 ± 14.66 g) (p < 0.05) vs. control rats (130.06 ± 28.23 mL; 16.38 ± 2.50 g/cm2; 193 ± 42.21 g) and exercise prevented (91.33 ± 12.33 mL; 11.73 ± 0.47 g/cm2; 133.8 ± 16.82 g) (p < 0.05) these changes. The exercise+ileitis group induces a reduction (p < 0.05) in gastric retention vs. ileitis and control (11.22 ± 1.91% vs. 35.17 ± 1.01% and 33.96 ± 1.77%). Ileitis increased intestinal retention in the duodenum (46.3 ± 2.56% vs. 24.98 ± 1.78%) and jejunum (34.22 ± 2.33% and 34.72 ± 2.83% vs. 47.32 ± 1.48%) (p < 0.05) and decreased intestinal retention in the ileum (p < 0.05) vs. the control group. Exercise+ileitis prevented (p < 0.05) changes in the duodenum (24.96 ± 1.66% vs. 46.3 ± 2.56%) and ileum (40.32 ± 3.75% vs. 14.08 ± 0.88%). Ileitis induces high MDA levels (p < 0.05) vs. control rats (4.43 ± 0.69 vs. 2.15 ± 0.12 nmol/mg of the tissue). This effect was prevented (p < 0.05) in the exercise+ileitis group (2.75 ± 0.21 vs. 4.43 ± 0.69 nmol/mg of the tissue). We observed a reduction in the LF component (p < 0.05) in the ileitis group vs. control group (31.32 ± 3.99 vs. 43.43 ± 3.86). The correlation indicated a stronger interrelationship between the autonomic parameter and intestinal retention in the ileum (r: 0.68; p: 0.04). The current study suggests intestinal ileitis alters GI motility and autonomic balance, and physical exercise can represent an essential non-pharmacological approach to IBD treatment.
Collapse
Affiliation(s)
- Brenda Lois Barros dos Santos
- Graduate Program in Pharmaceutical Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil;
- Laboratory of Exercise and Gastrointestinal Tract—Department of Physical Education, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (A.C.A.d.S.); (J.S.S.); (L.E.d.S.); (H.S.S.)
| | - Alda Cássia Alves da Silva
- Laboratory of Exercise and Gastrointestinal Tract—Department of Physical Education, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (A.C.A.d.S.); (J.S.S.); (L.E.d.S.); (H.S.S.)
- Graduate Program in Pharmacology, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (B.d.S.B.); (F.A.d.S.M.); (F.L.T.-L.)
| | - Juliana Soares Severo
- Laboratory of Exercise and Gastrointestinal Tract—Department of Physical Education, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (A.C.A.d.S.); (J.S.S.); (L.E.d.S.); (H.S.S.)
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Bruno de Sousa Barbosa
- Graduate Program in Pharmacology, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (B.d.S.B.); (F.A.d.S.M.); (F.L.T.-L.)
| | - Maisa Campêlo de Sousa
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil; (M.C.d.S.); (A.K.L.d.F.); (A.A.d.S.)
| | | | - Lucas Estevão de Sousa
- Laboratory of Exercise and Gastrointestinal Tract—Department of Physical Education, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (A.C.A.d.S.); (J.S.S.); (L.E.d.S.); (H.S.S.)
| | - Heron Silva Soares
- Laboratory of Exercise and Gastrointestinal Tract—Department of Physical Education, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (A.C.A.d.S.); (J.S.S.); (L.E.d.S.); (H.S.S.)
| | - Antônio Klingem Leite de Freitas
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil; (M.C.d.S.); (A.K.L.d.F.); (A.A.d.S.)
| | - Francisco Leonardo Torres-Leal
- Graduate Program in Pharmacology, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (B.d.S.B.); (F.A.d.S.M.); (F.L.T.-L.)
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Laboratory of Metabolic Diseases Glauto Tuquarre, Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina 64049-550, PI, Brazil
| | - Paulo Correia-de-Sá
- Laboratory of Pharmacology and Neurobiology, (MedInUP/RISE-Health), Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Science—ICBAS, University of Porto, 4050-313 Porto, Portugal;
| | - Armênio Aguiar dos Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza 60430-270, CE, Brazil; (M.C.d.S.); (A.K.L.d.F.); (A.A.d.S.)
| | - Moisés Tolentino Bento da Silva
- Laboratory of Exercise and Gastrointestinal Tract—Department of Physical Education, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (A.C.A.d.S.); (J.S.S.); (L.E.d.S.); (H.S.S.)
- Graduate Program in Pharmacology, Federal University of Piaui, Teresina 64049-550, PI, Brazil; (B.d.S.B.); (F.A.d.S.M.); (F.L.T.-L.)
- Laboratory of Physiology, (MedInUP/RISE-Health), Department of Immuno-Physiology and Pharmacology, School of Medicine and Biomedical Science—ICBAS, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Singh P, Chaudhary M, Kazmi JS, Kuschner CE, Volpe BT, Chaudhuri TD, Becker LB. Vagus nerve stimulation: A targeted approach for reducing tissue-specific ischemic reperfusion injury. Biomed Pharmacother 2025; 184:117898. [PMID: 39923406 DOI: 10.1016/j.biopha.2025.117898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Vagus Nerve Stimulation (VNS), a neuromodulation technique of applying controlled electrical impulses to the vagus nerve, has now emerged as a potential therapeutic approach for ischemia-reperfusion insults. It provides a pivotal link in improving functional outcomes for the central nervous system and multiple target organs affected by ischemia-reperfusion injury (I/RI). Reduced blood flow during ischemia and subsequent resumption of blood supply during reperfusion to the tissue compromises cellular health because of the combination of mitochondrial dysfunction, oxidative stress, cytokine release, inflammation, apoptosis, intracellular calcium overload, and endoplasmic reticulum stress, which ultimately leads to cell death and irreversible tissue damage. Furthermore, inflammation and apoptosis also play critical roles in the acute progression of ischemic injury pathology. Emerging evidence indicates that VNS in I/RI may act in an anti-inflammatory capacity, reducing oxidative stress and apoptosis, while also improving endothelial and mitochondrial function leading to reduced infarct sizes and cytoprotection in skeletal muscle, gastrointestinal tract, liver, kidney, lung, heart, and brain tissue. In this review, we attempt to shed light on the mechanistic links between tissue-specific damage following I/RI and the therapeutic approach of VNS in attenuating damage, considering both direct and remote I/RI scenarios. Thus, we want to advance the understanding of VNS that could further warrant its clinical implementation, especially as a treatment for I/RI.
Collapse
Affiliation(s)
- Parmeshar Singh
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Manju Chaudhary
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jacob S Kazmi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Cyrus E Kuschner
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA
| | - Bruce T Volpe
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Timir D Chaudhuri
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Lance B Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Department of Emergency Medicine, Northwell Health, NY, USA; Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan.
| |
Collapse
|
5
|
Jerman I, Škafar M, Pihir J, Senica M. Evaluating PEMF vagus nerve stimulation through neck application: A randomized placebo study with volunteers. Electromagn Biol Med 2025; 44:173-186. [PMID: 39972609 DOI: 10.1080/15368378.2025.2462649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/30/2025] [Indexed: 02/21/2025]
Abstract
This study investigates the effects of pulsed electromagnetic field (PEMF) therapy on vagus nerve stimulation through non-invasive neck applications. Exploring the efficacy of PEMF across different frequencies (6 hz, 16 hz, and 32 hz), this double-blind placebo-controlled trial included 485 volunteers to assess its impact on autonomic nervous system functions, particularly targeting sleep disturbances and anxiety. Results demonstrated significant improvements in sleep quality and reduction in anxiety levels, especially notable at 16 hz. These findings suggest that PEMF therapy, by modulating autonomic activity, offers a beneficial non-pharmacological treatment option for related disorders.
Collapse
Affiliation(s)
- I Jerman
- BION Institute, Ljubljana, Slovenia
| | - M Škafar
- BION Institute, Ljubljana, Slovenia
| | - J Pihir
- BION Institute, Ljubljana, Slovenia
| | - M Senica
- BION Institute, Ljubljana, Slovenia
| |
Collapse
|
6
|
Song G, Sclocco R, Sharma A, Guerrero-López I, Kuo B. Electroceuticals and Magnetoceuticals in Gastroenterology. Biomolecules 2024; 14:760. [PMID: 39062474 PMCID: PMC11275046 DOI: 10.3390/biom14070760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
In the realm of gastroenterology, the inadequacy of current medical treatments for gastrointestinal (GI) motility disorders and inflammatory bowel disease (IBD), coupled with their potential side effects, necessitates novel therapeutic approaches. Neuromodulation, targeting the nervous system's control of GI functions, emerges as a promising alternative. This review explores the promising effects of vagal nerve stimulation (VNS), magnetic neuromodulation, and acupuncture in managing these challenging conditions. VNS offers targeted modulation of GI motility and inflammation, presenting a potential solution for patients not fully relieved from traditional medications. Magnetic neuromodulation, through non-invasive means, aims to enhance neurophysiological processes, showing promise in improving GI function and reducing inflammation. Acupuncture and electroacupuncture, grounded in traditional medicine yet validated by modern science, exert comprehensive effects on GI physiology via neuro-immune-endocrine mechanisms, offering relief from motility and inflammatory symptoms. This review highlights the need for further research to refine these interventions, emphasizing their prospective role in advancing patient-specific management strategies for GI motility disorders and IBD, thus paving the way for a new therapeutic paradigm.
Collapse
Affiliation(s)
- Gengqing Song
- Division of Gastroenterology & Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH 44109, USA;
| | - Roberta Sclocco
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA 02129, USA;
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amol Sharma
- Division of Gastroenterology & Hepatology, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ingrid Guerrero-López
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain;
| | - Braden Kuo
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
7
|
Lloyd DA, Alejandra Gonzalez-Gonzalez M, Romero-Ortega MI. AxoDetect: an automated nerve image segmentation and quantification workflow for computational nerve modeling. J Neural Eng 2024; 21:026017. [PMID: 38457836 PMCID: PMC10976901 DOI: 10.1088/1741-2552/ad31c3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/11/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
Objective.Bioelectronic treatments targeting near-organ innervation have unprecedented clinical applications. Particularly in the spleen, the inhibition of the cholinergic inflammatory response by near-organ nerve stimulation has potential to replace pharmacological treatments in chronic and autoimmune diseases. A caveat is that the optimization of therapeutic stimulation parameters relies onin vivoexperimentation, which becomes challenging due to the small nerve diameters (2 μm), complex anatomy, and mixed axon type composition of the autonomic nerves. Effective development ofin silicomodels requires tools which allow for fast and efficient quantification of axonal composition of specific nerves. Current approaches to generate such information rely on manual image segmentation and quantification.Approach.We developed a combined image-segmentation and model-generation software called AxoDetect: a target- and format-agnostic computer vision algorithm which can segment myelin, endo/epineurium, and both myelinated and unmyelinated fibers from a nerve image without training.Main results.AxoDetect is over 10 times faster on average when compared with current automatic methods while maintaining flexibility through the use of tunable pixel threshold filters to detect different types of tissue. When compared to a distribution-based and a manually segmented model of the splenic nerve terminal branch 1, the model generated with AxoDetect had comparable threshold prediction and was able to accurately detect an increase in activation threshold caused by the addition of surrounding fat tissue to the modeled nerve.Significance.AxoDetect contributes to the acceleration of neuromodulation treatment development through faster model design and iteration without requiring training. Furthermore, the computer vision approach and tunable nature of the filters in our method allow for its use in a variety of histological applications. Our approach will impact not only the study of nerves but also the design of implantable neural interfaces to enhance bioelectronic therapeutic options.
Collapse
Affiliation(s)
- David A Lloyd
- Departments of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, United States of America
| | - Maria Alejandra Gonzalez-Gonzalez
- Departments of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States of America
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States of America
| | - Mario I Romero-Ortega
- Departments of Biomedical Engineering and Biomedical Sciences, University of Houston, Houston, TX, United States of America
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
8
|
Lee KE, Tu VY, Faye AS. Optimal Management of Refractory Crohn's Disease: Current Landscape and Future Direction. Clin Exp Gastroenterol 2024; 17:75-86. [PMID: 38558912 PMCID: PMC10981422 DOI: 10.2147/ceg.s359376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Refractory Crohn's disease, defined as ongoing inflammation despite the trial of multiple advanced therapies, impacts a number of individuals with Crohn's disease, and leads to significant burden in quality of life and cost. Interventions such as early implementation of advanced therapies, optimization of current therapies prior to switching to an alternative, as well as understanding the overlapping pathophysiology between immune-mediated disorders, however, can help shift the current landscape and reduce the number of patients with refractory disease. As such, in this review we summarize the key takeaways of the latest research in the management of moderate-to-severe Crohn's disease, focusing on maximization of our currently available medications, while also exploring topics such as combination advanced therapies. We also describe evidence for emerging and alternative therapeutic modalities, including fecal microbiota transplant, exclusive enteral feeding, hyperbaric oxygen, stem cell therapy, bone marrow transplant, and posaconazole, with a focus on both the potential impact and specific indications for each.
Collapse
Affiliation(s)
- Kate E Lee
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Violet Y Tu
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adam S Faye
- Department of Gastroenterology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
9
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
10
|
Benfante A, Cisarò F, Ribaldone DG, Castelli L, Sandroni N, Romeo A. Inflammatory Bowel Disease and Irritable Bowel Syndrome: What Differences in Mentalization Abilities? A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7125. [PMID: 38063555 PMCID: PMC10706729 DOI: 10.3390/ijerph20237125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Mentalization is a psychological process that enables individuals to understand the self and others in terms of intentional mental states. The aim of this scoping review was to provide an overview of the findings on mentalization in patients with inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). A literature search, in line with the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols extension for Scoping Review guidelines, was conducted in the following bibliographic databases: PubMed, PsycINFO, and Scopus. Databases were queried using the following strings (with Boolean operators): ("mentaliz*" OR "metacogniti*" OR "theory of mind" OR "ToM" OR "reflective function*") AND ("irritable bowel syndrome" OR "IBS" OR "inflammatory bowel disease" OR "IBD"). In line with the eligibility criteria, seven articles were included. Results showed that no significant differences in metacognitive ability were found between patients in the IBD and IBS groups. This review revealed the mentalizing difficulties for patients with IBD and IBS. These results should be interpreted with caution since they are based on a few studies that used different instruments to assess mentalizing processes. Future studies are needed to clarify the role of mentalization in patients with these gastrointestinal conditions.
Collapse
Affiliation(s)
- Agata Benfante
- Department of Psychology, University of Turin, 10124 Turin, Italy; (L.C.); (N.S.); (A.R.)
| | - Fabio Cisarò
- Division of Digestive Endoscopy, Città della Salute e della Scienza University-Hospital, 10126 Turin, Italy;
| | - Davide Giuseppe Ribaldone
- Division of Gastroenterology, Città della Salute e della Scienza University-Hospital, 10126 Turin, Italy;
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Lorys Castelli
- Department of Psychology, University of Turin, 10124 Turin, Italy; (L.C.); (N.S.); (A.R.)
| | - Nikolas Sandroni
- Department of Psychology, University of Turin, 10124 Turin, Italy; (L.C.); (N.S.); (A.R.)
| | - Annunziata Romeo
- Department of Psychology, University of Turin, 10124 Turin, Italy; (L.C.); (N.S.); (A.R.)
| |
Collapse
|
11
|
Kavakbasi E, Baune BT. [Vagus Nerve Stimulation (VNS) in Depression]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023. [PMID: 37956870 DOI: 10.1055/a-2165-7860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Major depressive disorder is a common mental health disease with a chronic and treatment-resistant course in about one-third of patients. Invasive vagus nerve stimulation (VNS) as a long-term adjunctive treatment option has increasingly been used in the last years. VNS was CE-certified in the European Union for use in chronic and treatment-resistant depression in 2001. Method In this narrative literature review we provide an overview on VNS as a treatment option in patients with depression. We particularly focus on aspects with high clinical relevance. Results Indication to conduct VNS is determined after comprehensive evaluation of the patients' symptoms and psychiatric history. After education of patients and caregivers and obtaining informed consent, a pacemaker-like pulse generator is implanted in the left chest in a short surgical procedure. In the first weeks after implantation, the stimulation is turned on stepwise in an outpatient setting. The left vagal nerve is stimulated for 30 sec. every 5 minutes. Hoarseness during stimulation is the most frequent side-effect. There is a delay in the onset of antidepressant action of about 6-12 months. In a large registry, the cumulative response rate after 5 years was significantly higher (67.6%) in patients treated with VNS plus treatment-as-usual (TAU) than TAU alone (40.9%). Long-term benefits of VNS on quality of life, cognition, morbidity and mortality have been described previously. Conclusion VNS is a long-term safe treatment option in severely affected patients with depression with positive impact on depression severity, quality of life and cognitive function. Increase of monoaminergic transmission and anti-inflammatory effects of VNS are possible mechanisms of action.
Collapse
Affiliation(s)
- Erhan Kavakbasi
- Klinik für Psychische Gesundheit, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| | - Bernhard T Baune
- Klinik für Psychische Gesundheit, Universitätsklinikum Münster, Universität Münster, Münster, Germany
| |
Collapse
|
12
|
Schreiber LS, Wozniak D, Scheller E, Böttcher E, Pelz JO, Schmidt FM. Enlarged cross-sectional area of the left vagus nerve in patients with major depressive disorder. Front Psychiatry 2023; 14:1237983. [PMID: 37583842 PMCID: PMC10423806 DOI: 10.3389/fpsyt.2023.1237983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/14/2023] [Indexed: 08/17/2023] Open
Abstract
Purpose Autonomic dysfunction and a chronic low-grade inflammation are supposed to play a role in the etiology of major depressive disorder (MDD). The vagus nerves (VN) form a major part of the parasympathetic nervous system and of the gut-brain axis. They are supposed to exert anti-inflammatory and epithelial barrier protective effects in the gut. A reduced vagal activity was described in patients with MDD. We aimed to examine the VN in patients with MDD with high-resolution ultrasound (HRUS) and hypothesized that the cross-sectional area (CSA) and the echogenicity of the VNs were altered in comparison to healthy controls. Materials and methods The echogenicity (gray scale mean) and the CSA of the cervical VNs at the level of the thyroid gland and both median nerves were examined with HRUS in 50 patients with MDD and 50 matched healthy controls. Results The left VN-CSA was significantly larger in the MDD group compared to the control group (1.7 ± 0.4 mm2 versus 1.5 ± 0.4 mm2; p = 0.045). The CSA of the right VN and both median nerves (MN) were similar between groups. In MDD subgroup analyses, recurrent depressive disorders were the main contributing factor for the left VN-CSA enlargement. Echogenicity was not altered in the VN and MN between groups. Conclusion The enlargement of the left VN-CSA in patients with MDD, and especially in these patients with recurrent depressive disorders, might turn out as a promising imaging biomarker. Longitudinal studies are warranted to examine whether the VNs-CSA change in the course of MDD.
Collapse
Affiliation(s)
- Lisa Sofie Schreiber
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, Leipzig, Germany
| | - David Wozniak
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, Leipzig, Germany
| | - Erik Scheller
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, Leipzig, Germany
| | - Elise Böttcher
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, Leipzig, Germany
| | - Johann Otto Pelz
- Department of Neurology, Leipzig University Hospital, Leipzig, Germany
| | - Frank M. Schmidt
- Department of Psychiatry and Psychotherapy, Leipzig University Hospital, Leipzig, Germany
| |
Collapse
|
13
|
Bartocci B, Dal Buono A, Gabbiadini R, Busacca A, Quadarella A, Repici A, Mencaglia E, Gasparini L, Armuzzi A. Mental Illnesses in Inflammatory Bowel Diseases: mens sana in corpore sano. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040682. [PMID: 37109640 PMCID: PMC10145199 DOI: 10.3390/medicina59040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
Background and aims: Inflammatory bowel diseases (IBD) are chronic disorders associated with a reduced quality of life, and patients often also suffer from psychiatric comorbidities. Overall, both mood and cognitive disorders are prevalent in chronic organic diseases, especially in the case of a strong immune component, such as rheumatoid arthritis, multiple sclerosis, and cancer. Divergent data regarding the true incidence and prevalence of mental disorders in patients with IBD are available. We aimed to review the current evidence on the topic and the burden of mental illness in IBD patients, the role of the brain-gut axis in their co-existence, and its implication in an integrated clinical management. Methods: PubMed was searched to identify relevant studies investigating the gut-brain interactions and the incidence and prevalence of psychiatric disorders, especially of depression, anxiety, and cognitive dysfunction in the IBD population. Results: Among IBD patients, there is a high prevalence of psychiatric comorbidities, especially of anxiety and depression. Approximately 20-30% of IBD patients are affected by mood disorders and/or present with anxiety symptoms. Furthermore, it has been observed that the prevalence of mental illnesses increases in patients with active intestinal disease. Psychiatric comorbidities continue to be under-diagnosed in IBD patients and remain an unresolved issue in the management of these patients. Conclusions: Psychiatric illnesses co-occurring in IBD patients deserve acknowledgment from IBD specialists. These comorbidities highly impact the management of IBD patients and should be studied as an adjunctive therapeutic target.
Collapse
Affiliation(s)
- Bianca Bartocci
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Arianna Dal Buono
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Anita Busacca
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Quadarella
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Emanuela Mencaglia
- Medical Oncology and Haematology Unit, Humanitas Cancer Center, Humanitas Research Hospital IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Linda Gasparini
- Child Neuropsychiatry Unit, Niguarda Hospital, 20162 Milan, Italy
| | - Alessandro Armuzzi
- IBD Center, Humanitas Research Hospital-IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| |
Collapse
|
14
|
Zhou YF, Kang JW, Xiong Q, Feng Z, Dong XY. Transauricular vagus nerve stimulation for patients with disorders of consciousness: A randomized controlled clinical trial. Front Neurol 2023; 14:1133893. [PMID: 36937511 PMCID: PMC10017768 DOI: 10.3389/fneur.2023.1133893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Disorders of consciousness (DoCs) are a frequent complication of brain injury disease, and effective treatments are currently lacking. Transauricular vagus nerve stimulation (tVNS) has been proposed as a promising therapeutic method for neurological disorders such as epilepsy and depression. In our previous study, we demonstrated that vagus nerve stimulation promoted recovery in rats with DoCs caused by traumatic brain injury. However, the clinical effect of vagus nerve stimulation on consciousness disorders is unclear. We aimed to investigate the therapeutic efficacy and safety of tVNS in patients with DoCs. Methods We conducted a randomized, double-blinded, sham-controlled trial. Patients (N = 60) with DoCs, including minimally conscious state (MCS) and vegetative state/unresponsive wakefulness syndrome, were enrolled and randomized to groups receiving either active or sham tVNS. A frequency of 20 Hz and pulse wave of 200 us was used in the active-tVNS protocol, which was performed in the auricular branch of the vagus nerve in the left outer ear. The sham-tVNS protocol was the same as the active-tVNS protocol although without current input. Both groups of patients also received conventional treatments. Consciousness was evaluated according to the Coma Recovery Scale-Revised before and after the 4-week intervention. We also recorded the type and number of behavioral responses. Safety was primarily assessed according to the incidence of treatment-emergent adverse events. Each patient's heart rate and blood pressure were monitored during all treatment sessions. Results Ultimately, 57 patients completed the study: 28 patients underwent active tVNS and 29 patients underwent sham tVNS. No significant differences were observed in Coma Recovery Scale-Revised scores between the active- and sham-tVNS groups before the tVNS sessions. Compared with patients in the sham-tVNS group (9.28 ± 4.38), patients with DoCs treated with active tVNS showed improved consciousness (10.93 ± 4.99), although not statistically significant. Further analysis revealed obvious differences between patients with MCS receiving active and sham tVNS, but no significant difference in patients with vegetative state/unresponsive wakefulness syndrome in both groups. All side effects were considered common medical conditions with no obvious correlation to tVNS. Conclusion These preliminary data provide early evidence that tVNS may be an effective and safe approach for promoting the recovery of consciousness, especially in patients with MCS. Clinical trial registration https://www.chictr.org.cn/edit.aspx?pid=175938&htm=4, identifier: ChiCTR2200066629.
Collapse
|