1
|
Gui G, Ravindra N, Hegde PS, Andrew G, Mukherjee D, Wong Z, Auletta JJ, El Chaer F, Chen EC, Chen YB, Corner A, Devine SM, Iyer SG, Jimenez Jimenez AM, De Lima MJG, Litzow MR, Kebriaei P, Saber W, Spellman SR, Zeger SL, Page KM, Dillon LW, Hourigan CS. Measurable residual mutated IDH2 before allogeneic transplant for acute myeloid leukemia. Bone Marrow Transplant 2025; 60:144-153. [PMID: 39455897 PMCID: PMC11810785 DOI: 10.1038/s41409-024-02449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Routine genetic profiling of acute myeloid leukemia (AML) at initial diagnosis has allowed subgroup specific prognostication, drug development, and clinical management strategies. The optimal approach for treatment response assessment for AML subgroups has not yet however been determined. A nationwide cohort of 257 adult patients in first remission (CR1) from AML associated with an IDH2 mutation (IDH2m) undergoing allogeneic transplant during the period 2013-2019 in the United States had rates of relapse and survival three years after transplantation of 24% and 71%, respectively. Pre-transplant clinical flow cytometry assessment was not useful in stratifying patients based on risk of post-transplant relapse or death. DNA-sequencing was performed on CR1 blood collected within 100 days before transplant. Persistent detection of IDH2m was common (51%) and associated with increased relapse and death compared to testing negative. Co-mutation at initial diagnosis with mutated NPM1 and/or FLT3-ITD was common in this cohort (41%) and use of these validated MRD markers provided superior stratification compared to IDH2m testing. Patients testing negative for IDH2m prior to transplant had low relapse-related death, regardless of conditioning intensity. Post-transplant relapse rates for those with persistently detectable IDH2m in pre-transplant remission were lower after the FDA approval of enasidenib in August 2017.
Collapse
Affiliation(s)
- Gege Gui
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, DC, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Niveditha Ravindra
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pranay S Hegde
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia Andrew
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devdeep Mukherjee
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zoë Wong
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery J Auletta
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Evan C Chen
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yi-Bin Chen
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Steven M Devine
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN, USA
| | - Sunil G Iyer
- Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Partow Kebriaei
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN, USA
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristin M Page
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laura W Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christopher S Hourigan
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, DC, USA.
| |
Collapse
|
2
|
Gui G, Ravindra N, Hegde PS, Andrew G, Mukherjee D, Wong Z, Auletta JJ, El Chaer F, Chen EC, Chen YB, Corner A, Devine SM, Iyer SG, Jimenez Jimenez AM, De Lima MJG, Litzow MR, Kebriaei P, Saber W, Spellman SR, Zeger SL, Page KM, Dillon LW, Hourigan CS. Measurable residual mutated IDH1 before allogeneic transplant for acute myeloid leukemia. Bone Marrow Transplant 2025; 60:154-160. [PMID: 39506075 PMCID: PMC11810766 DOI: 10.1038/s41409-024-02447-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024]
Abstract
Measurable residual disease (MRD) in adults with acute myeloid leukemia (AML) in complete remission is an important prognostic marker, but detection methodology requires optimization. Persistence of mutated NPM1 or FLT3-ITD in the blood of adult patients with AML in first complete remission (CR1) prior to allogeneic hematopoietic cell transplant (alloHCT) associates with increased relapse and death after transplant. The prognostic implications of persistence of other common AML-associated mutations, such as IDH1, at this treatment landmark however remain incompletely defined. We performed testing for residual IDH1 variants (IDH1m) in pre-transplant CR1 blood of 148 adult patients undergoing alloHCT for IDH1-mutated AML at a CIBMTR reporting site between 2013 and 2019. No statistically significant post-transplant differences were observed between those testing IDH1m positive (n = 53, 36%) and negative pre-transplant (overall survival (OS): p = 0.4; relapse: p = 0.5). For patients with IDH1 mutated AML co-mutated with NPM1 and/or FLT3-ITD, only detection of persistent mutated NPM1 and/or FLT3-ITD was associated with significantly higher rates of relapse (p = 0.01). These data, from the largest study to date, do not support the detection of IDH1 mutation in CR1 blood prior to alloHCT as evidence of AML MRD for increased post-transplant relapse risk.
Collapse
Affiliation(s)
- Gege Gui
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, DC, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Niveditha Ravindra
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pranay S Hegde
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Georgia Andrew
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Devdeep Mukherjee
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zoë Wong
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery J Auletta
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Evan C Chen
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yi-Bin Chen
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Steven M Devine
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN, USA
| | - Sunil G Iyer
- Columbia University Irving Medical Center, New York, NY, USA
| | | | | | | | - Partow Kebriaei
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wael Saber
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, NMDP, Minneapolis, MN, USA
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kristin M Page
- Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laura W Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christopher S Hourigan
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, DC, USA.
| |
Collapse
|
3
|
Fei F, Telatar M, Tomasian V, Chang L, Gust M, Yew H, Dyer T, Danilova O, Arias-Stella J, Pillai R, Aldoss I, Stewart FM, Becker PS, Pullarkat V, Marcucci G, Afkhami M. Application of RNA-Based Next-Generation Sequencing Fusion Assay for Hematological Malignancies. Int J Mol Sci 2025; 26:435. [PMID: 39859151 PMCID: PMC11765404 DOI: 10.3390/ijms26020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Recurrent fusions drive the pathogenesis of many hematological malignancies. Compared to routine cytogenetic/fluorescence in situ hybridization (FISH) studies, the RNA-based next-generation sequencing (NGS) fusion assay enables the identification of both known and novel fusions. In many cases, these recurrent fusions are crucial for diagnosis and are associated with prognosis, relapse prediction, and therapeutic options. The aim of this study is to investigate the application of the RNA-based NGS fusion assay in hematological malignancies. Our study included 3101 cases with available fusion results, and a fusion event was identified in 17.6% of cases. The discordant rate between the RNA-based NGS fusion assay and cytogenetic/FISH studies was 36.3%. Further analysis of discordant cases indicated that, compared to cytogenetic/FISH studies, the RNA-based NGS fusion assay significantly improved the identification of cryptic fusion genes, such as NUP98::NSD1, P2RY8::CRLF2, and KMT2A fusions involving different partners. Additionally, our study identified 24 novel fusions and 16 cases with the simultaneous presence of two fusions. These additional findings from the RNA-based NGS fusion assay resulted in improved risk stratification, disease targeting and monitoring. In conclusion, our study demonstrates the feasibility and utility of an RNA-based NGS fusion assay for patients with hematological malignancies, suggesting that it may be essential for the routine clinical workup of these patients.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Milhan Telatar
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Vanina Tomasian
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Lisa Chang
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Mariel Gust
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Hooi Yew
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Tamerisa Dyer
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Olga Danilova
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Javier Arias-Stella
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Raju Pillai
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Ibrahim Aldoss
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - F. Marc Stewart
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Pamela S. Becker
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Vinod Pullarkat
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| |
Collapse
|
4
|
Kakodkar P, Zhao Y, Pan H, Wu F, Pearce T, Webster D, Elemary M, Sabry W, Kwan L, Pelzer L, Bosch M, Sherwood KR, Lan J, Tran J, Liwski R, Keown P, Mostafa A. Validation of next-generation sequencing-based chimerism testing for accurate detection and monitoring of engraftment in hematopoietic stem cell transplantation. Front Genet 2023; 14:1282947. [PMID: 37937195 PMCID: PMC10626454 DOI: 10.3389/fgene.2023.1282947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a life-saving treatment for various hematological disorders. The success of allo-HSCT depends on the engraftment of donor cells and the elimination of recipient cells monitored through chimerism testing. We aimed to validate a next-generation sequencing (NGS)-based chimerism assay for engraftment monitoring and to emphasize the importance of including the most prevalent cell subsets in proficiency testing (PT) programs. We evaluated the analytical performance of NGS-based chimerism testing (AlloSeq-HCT and CareDx) with a panel of targeted 202 informative single-nucleotide polymorphisms (SNPs) (i.e., linearity and precision, analytical sensitivity and specificity, system accuracy, and reproducibility). We further compared the performance of our NGS panel with conventional short tandem repeat (STR) analysis in unfractionated whole blood and cell-subset-enriched CD3 and CD66. Our NGS-based chimerism monitoring assay has an impressive detection limit (0.3% host DNA) for minor alleles and analytical specificity (99.9%). Pearson's correlation between NGS- and STR-based chimerism monitoring showed a linear relationship with a slope of 0.8 and r = 0.973. The concordance of allo-HSCT patients using unfractionated whole blood, CD3, and CD66 was 0.95, 0.96, and 0.54, respectively. Utilization of CD3+ cell subsets for mixed chimerism detection yielded an average of 7.3 ± 7-fold higher donor percentage detection compared to their corresponding unfractionated whole blood samples. The accuracy of the NGS assay achieved a concordance of 98.6% on blinded external quality control STR samples. The reproducibility series showed near 100% concordance with respect to inter-assay, inter-tech, inter-instrument, cell flow kits, and AlloSeq-HCT software versions. Our study provided robust validation of NGS-based chimerism testing for accurate detection and monitoring of engraftment in allo-HSCT patients. By incorporating the cell subsets (CD3 and CD66), the sensitivity and accuracy of engraftment monitoring are significantly improved, making them an essential component of any PT program. Furthermore, the implementation of NGS-based chimerism testing shows potential to streamline high-volume transplant services and improve clinical outcomes by enabling early relapse detection and guiding timely interventions.
Collapse
Affiliation(s)
- Pramath Kakodkar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yayuan Zhao
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Henry Pan
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fang Wu
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Twyla Pearce
- Histocompatibility and Immunogenetics Laboratory, St. Paul’s Hospital, Saskatoon, SK, Canada
| | - Destinie Webster
- Histocompatibility and Immunogenetics Laboratory, St. Paul’s Hospital, Saskatoon, SK, Canada
| | - Mohamed Elemary
- Department of Hematological Oncology, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | - Waleed Sabry
- Department of Hematological Oncology, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | - Luvinia Kwan
- HLA Laboratory, Cancer Care Manitoba, Winnipeg, MB, Canada
| | - Lindsay Pelzer
- Department of Hematological Oncology, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | - Mark Bosch
- Department of Hematological Oncology, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | - Karen R. Sherwood
- University of British Columbia, Vancouver Coastal Health, Vancouver, BC, Canada
| | - James Lan
- Department of Transplant Nephrology, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Jenny Tran
- University of British Columbia, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Robert Liwski
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Paul Keown
- University of British Columbia, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Ahmed Mostafa
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Histocompatibility and Immunogenetics Laboratory, St. Paul’s Hospital, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Ogbue O, Unlu S, Ibodeng GO, Singh A, Durmaz A, Visconte V, Molina JC. Single-Cell Next-Generation Sequencing to Monitor Hematopoietic Stem-Cell Transplantation: Current Applications and Future Perspectives. Cancers (Basel) 2023; 15:cancers15092477. [PMID: 37173944 PMCID: PMC10177286 DOI: 10.3390/cancers15092477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) are genetically complex and diverse diseases. Such complexity makes challenging the monitoring of response to treatment. Measurable residual disease (MRD) assessment is a powerful tool for monitoring response and guiding therapeutic interventions. This is accomplished through targeted next-generation sequencing (NGS), as well as polymerase chain reaction and multiparameter flow cytometry, to detect genomic aberrations at a previously challenging leukemic cell concentration. A major shortcoming of NGS techniques is the inability to discriminate nonleukemic clonal hematopoiesis. In addition, risk assessment and prognostication become more complicated after hematopoietic stem-cell transplantation (HSCT) due to genotypic drift. To address this, newer sequencing techniques have been developed, leading to more prospective and randomized clinical trials aiming to demonstrate the prognostic utility of single-cell next-generation sequencing in predicting patient outcomes following HSCT. This review discusses the use of single-cell DNA genomics in MRD assessment for AML/MDS, with an emphasis on the HSCT time period, including the challenges with current technologies. We also touch on the potential benefits of single-cell RNA sequencing and analysis of accessible chromatin, which generate high-dimensional data at the cellular resolution for investigational purposes, but not currently used in the clinical setting.
Collapse
Affiliation(s)
- Olisaemeka Ogbue
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Serhan Unlu
- Internal Medicine, Cleveland Clinic Fairview Hospital, Cleveland, OH 44111, USA
| | - Gogo-Ogute Ibodeng
- Internal Medicine, Infirmary Health's Thomas Hospital, Fairhope, AL 36607, USA
| | - Abhay Singh
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Arda Durmaz
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Taussig Cancer Center, Cleveland, OH 44106, USA
| | - John C Molina
- Department of Hematology Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
6
|
Measurable Residual Disease and Clonal Evolution in Acute Myeloid Leukemia from Diagnosis to Post-Transplant Follow-Up: The Role of Next-Generation Sequencing. Biomedicines 2023; 11:biomedicines11020359. [PMID: 36830896 PMCID: PMC9953407 DOI: 10.3390/biomedicines11020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
It has now been ascertained that acute myeloid leukemias-as in most type of cancers-are mixtures of various subclones, evolving by acquiring additional somatic mutations over the course of the disease. The complexity of leukemia clone architecture and the phenotypic and/or genotypic drifts that can occur during treatment explain why more than 50% of patients-in hematological remission-could relapse. Moreover, the complexity and heterogeneity of clone architecture represent a hindrance for monitoring measurable residual disease, as not all minimal residual disease monitoring methods are able to detect genetic mutations arising during treatment. Unlike with chemotherapy, which imparts a relatively short duration of selective pressure on acute myeloid leukemia clonal architecture, the immunological effect related to allogeneic hematopoietic stem cell transplant is prolonged over time and must be overcome for relapse to occur. This means that not all molecular abnormalities detected after transplant always imply inevitable relapse. Therefore, transplant represents a critical setting where a measurable residual disease-based strategy, performed during post-transplant follow-up by highly sensitive methods such as next-generation sequencing, could optimize and improve treatment outcome. The purpose of our review is to provide an overview of the role of next-generation sequencing in monitoring both measurable residual disease and clonal evolution in acute myeloid leukemia patients during the entire course of the disease, with special focus on the transplant phase.
Collapse
|
7
|
Simonsen AT, Meggendorfer M, Hansen MH, Nederby L, Koch S, Hansen M, Rosenberg CA, Kern W, Nyvold CG, Aggerholm A, Haferlach T, Ommen HB. Acute myeloid leukemia displaying clonal instability during treatment: implications for measurable residual disease assessments. Exp Hematol 2022; 107:51-59. [PMID: 35122908 DOI: 10.1016/j.exphem.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022]
Abstract
Next-generation sequencing (NGS) is an excellent methodology for measuring residual disease in acute myeloid leukemia and survey several sub-clones simultaneously. Little experience exists regarding interpretation of differential clonal responses to therapy. We hypothesize that differential clonal response could best be studied in patients with residual disease at the time of response evaluation. We performed targeted panel sequencing of paired diagnostic and first treatment evaluation samples in 69 patients with residual disease by morphology or measurable residual disease (MRD) level >0.02. Five patients displayed a rising clone at the time of evaluation. A representative case showed the rising clone present only in the putative healthy stem cells (CD45lowCD34+CD38-CD123-CD7-) and not in the putative leukemic stem cells (CD34+CD38-CD123+CD7+) cells, thus representing non-malignant clonal hematopoiesis. In contrast, 17/43 evaluable patients displayed a differential response in genes related to the leukemic clone. 26/43 patients displayed a clonal response that followed the overall treatment response. Patients with a differential response had a better event-free survival (EFS) as well as overall survival (OS) than those where the clonal response followed the overall response (log-rank test, EFS P=0.045, OS, P=0.050). This indicates that when following multiple leukemia-related clones the less chemotherapy-responsive clone could, in some cases, have lesser relapse potential, contrary to what is known when using standard mutation or fusion transcript-based disease surveillance. In conclusion, our results confirm the potential of refining MRD assessments by following multiple clones and warrants further studies into the precise interpretations of multi-clone NGS-MRD assays.
Collapse
Affiliation(s)
- Anita T Simonsen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Marcus H Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark; Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Line Nederby
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Sarah Koch
- Munich Leukemia Laboratory GmbH, Munich, Germany
| | - Maria Hansen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Charlotte G Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Anni Aggerholm
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Hans B Ommen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
8
|
Aleem A, Haque AR, Roloff GW, Griffiths EA. Application of Next-Generation Sequencing-Based Mutational Profiling in Acute Lymphoblastic Leukemia. Curr Hematol Malig Rep 2021; 16:394-404. [PMID: 34613552 DOI: 10.1007/s11899-021-00641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Recent efforts to characterize hematologic cancers with genetic and molecular detail have largely relied on mutational profiling via next-generation sequencing (NGS). The application of NGS-guided disease prognostication and clinical decision making requires a basic understanding of sequencing advantages, pitfalls, and areas where clinical care might be enhanced by the knowledge generated. This article identifies avenues within the landscape of adult acute lymphoblastic leukemia (ALL) where mutational data hold the opportunity to enhance understanding of disease biology and patient care. RECENT FINDINGS NGS-based assessment of measurable residual disease (MRD) after ALL treatment allows for a sensitive and specific molecular survey that is at least comparable, if not superior, to existing techniques. Mutational assessment by NGS has unraveled complex signaling networks that drive pathogenesis of T-cell ALL. Sequencing of patients with familial clustering of ALL has also identified novel germline mutations whose inheritance predisposes to disease development in successive generations. While NGS-based assessment of hematopoietic malignancies often provides actionable information to clinicians, patients with acute lymphoblastic leukemia are left underserved due to a lack of disease classification and prognostication schema that integrate molecular data. Ongoing research is positioned to enrich the molecular toolbox available to clinicians caring for adult ALL patients and deliver new insights to guide therapeutic selection, monitor clinical response, and detect relapse.
Collapse
Affiliation(s)
- Ahmed Aleem
- Department of Medicine, Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Ali R Haque
- Department of Medicine, Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL, 60153, USA
| | - Gregory W Roloff
- Department of Medicine, Loyola University Medical Center, 2160 S. 1st Ave, Maywood, IL, 60153, USA.
| | - Elizabeth A Griffiths
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
9
|
Blouin AG, Ye F, Williams J, Askar M. A practical guide to chimerism analysis: Review of the literature and testing practices worldwide. Hum Immunol 2021; 82:838-849. [PMID: 34404545 DOI: 10.1016/j.humimm.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Currently there are no widely accepted guidelines for chimerism analysis testing in hematopoietic cell transplantation (HCT) patients. The objective of this review is to provide a practical guide to address key aspects of performing and utilizing chimerism testing results. In developing this guide, we conducted a survey of testing practices among laboratories that are accredited for performing engraftment monitoring/chimerism analysis by either the American Society for Histocompatibility & Immunogenetics (ASHI) and/or the European Federation of Immunogenetics (EFI). We interpreted the survey results in the light of pertinent literature as well as the experience in the laboratories of the authors. RECENT DEVELOPMENTS In recent years there has been significant advances in high throughput molecular methods such as next generation sequencing (NGS) as well as growing access to these technologies in histocompatibility and immunogenetics laboratories. These methods have the potential to improve the performance of chimerism testing in terms of sensitivity, availability of informative genetic markers that distinguish donors from recipients as well as cost. SUMMARY The results of the survey revealed a great deal of heterogeneity in chimerism testing practices among participating laboratories. The most consistent response indicated monitoring of engraftment within the first 30 days. These responses are reflective of published literature. Additional clinical indications included early detection of impending relapse as well as identification of cases of HLA-loss relapse.
Collapse
Affiliation(s)
- Amanda G Blouin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fei Ye
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jenifer Williams
- Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States
| | - Medhat Askar
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States; Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, United States.
| |
Collapse
|
10
|
Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia 2021; 35:2182-2198. [PMID: 34045662 PMCID: PMC8324480 DOI: 10.1038/s41375-021-01265-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 01/29/2023]
Abstract
Myelodysplastic syndromes (MDS) represent a heterogeneous group of myeloid neoplasms that are characterized by ineffective hematopoiesis, variable cytopenias, and a risk of progression to acute myeloid leukemia. Most patients with MDS are affected by anemia and anemia-related symptoms, which negatively impact their quality of life. While many patients with MDS have lower-risk disease and are managed by existing treatments, there currently is no clear standard of care for many patients. For patients with higher-risk disease, the treatment priority is changing the natural history of the disease by delaying disease progression to acute myeloid leukemia and improving overall survival. However, existing treatments for MDS are generally not curative and many patients experience relapse or resistance to first-line treatment. Thus, there remains an unmet need for new, more effective but tolerable strategies to manage MDS. Recent advances in molecular diagnostics have improved our understanding of the pathogenesis of MDS, and it is becoming clear that the diverse nature of genetic abnormalities that drive MDS demands a complex and personalized treatment approach. This review will discuss some of the challenges related to the current MDS treatment landscape, as well as new approaches currently in development.
Collapse
Affiliation(s)
- Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.
| | - Anne Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany
| | | | | |
Collapse
|
11
|
de Boer EN, Johansson LF, de Lange K, Bosga-Brouwer AG, van den Berg E, Sikkema-Raddatz B, van Diemen CC. Detection of Fusion Genes to Determine Minimal Residual Disease in Leukemia Using Next-Generation Sequencing. Clin Chem 2020; 66:1084-1092. [DOI: 10.1093/clinchem/hvaa119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023]
Abstract
Abstract
Background
Measuring minimal residual disease (MRD), the persistence of leukemic cells after treatment, is important for monitoring leukemia recurrence. The current methods for monitoring MRD are flow cytometry, to assess aberrant immune phenotypes, and digital droplet PCR (ddPCR), to target genetic aberrations such as single-nucleotide variants and gene fusions. We present the performance of an RNA-based next-generation sequencing (NGS) method for MRD gene fusion detection compared with ddPCR. This method may have advantages, including the capacity to analyze different genetic aberrations and patients in 1 experiment. In particular, detection at the RNA level may be highly sensitive if the genetic aberration is highly expressed.
Methods
We designed a probe-based NGS panel targeting the breakpoints of 11 fusion genes previously identified in clinical patients and 2 fusion genes present in cell lines. Blocking probes were added to prevent nonspecific enrichment. Each patient RNA sample was diluted in background RNA, depleted for rRNA and globin mRNA, converted to cDNA, and prepared for sequencing. Unique sequence reads, identified by unique molecular identifiers, were aligned directly to reference transcripts. The same patient and cell-line samples were also analyzed with ddPCR for direct comparison.
Results
Our NGS method reached a maximum sensitivity of 1 aberrant cell in 10 000 cells and was mostly within a factor of 10 compared with ddPCR.
Conclusions
Our detection limit was below the threshold of 1:1000 recommended by European Leukemia Net. Further optimizations are easy to implement and are expected to boost the sensitivity of our method to diagnostically obtained ddPCR thresholds.
Collapse
Affiliation(s)
- Eddy N de Boer
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lennart F Johansson
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kim de Lange
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anneke G Bosga-Brouwer
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eva van den Berg
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Birgit Sikkema-Raddatz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cleo C van Diemen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
Pettersson L, Chen Y, George AM, Rigo R, Lazarevic V, Juliusson G, Saal LH, Ehinger M. Subclonal patterns in follow-up of acute myeloid leukemia combining whole exome sequencing and ultrasensitive IBSAFE digital droplet analysis. Leuk Lymphoma 2020; 61:2168-2179. [PMID: 32425124 DOI: 10.1080/10428194.2020.1755855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We studied mutation kinetics in ten relapsing and four non-relapsing patients with acute myeloid leukemia by whole exome sequencing at diagnosis to identify leukemia-specific mutations and monitored selected mutations at multiple time-points using IBSAFE droplet digital PCR. Five to nine selected mutations could identify and track leukemic clones prior to clinical relapse in 10/10 patients at the time-points where measurable residual disease was negative by multicolor flow cytometry. In the non-relapsing patients, the load of mutations gradually declined in response to different therapeutic strategies. Three distinct patterns of relapse were observed: (1) one or more different clones with all monitored mutations reappearing at relapse; (2) one or more separate clones of which one prevailed at relapse; and (3) persistent clonal hematopoiesis with high variant allele frequency and most mutations present at relapse. These pilot results demonstrate that IBSAFE analyses detect leukemic clones missed by flow cytometry with possible clinical implications.HighlightsThe IBSAFE ddPCR MRD method seems applicable on virtually all newly diagnosed AML patients and was more sensitive than flow cytometry.Monitoring a few mutations captured the kinetics of the evolving recurrent leukemia.NPM1-mutation alone may not be a reliable MRD-marker.
Collapse
Affiliation(s)
- Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden
| | - Yilun Chen
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anthony M George
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert Rigo
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Oncology and Radiation Physics, Lund University, Skane University Hospital, Lund, Sweden.,Department of Laboratory Medicine, Stem Cell Center, Lund University, Skane University Hospital, Lund, Sweden
| | - Lao H Saal
- Department of Clinical Sciences, Division of Oncology, Faculty of Medicine, Lund University, Lund, Sweden.,Lund University Cancer Center, Medicon Village, Lund, Sweden
| | - Mats Ehinger
- Department of Clinical Sciences, Division of Pathology, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Ghannam J, Dillon LW, Hourigan CS. Next-generation sequencing for measurable residual disease detection in acute myeloid leukaemia. Br J Haematol 2019; 188:77-85. [PMID: 31804716 DOI: 10.1111/bjh.16362] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukaemia (AML) is a blood cancer characterized by acquired genetic mutations. There is great interest in accurately establishing measurable residual disease (MRD) burden in AML patients in remission after treatment but at risk of relapse. However, inter- and intrapatient genetic diversity means that, unlike in the chronic myeloid and acute promyelocytic leukaemias, no single genetic abnormality is pathognomonic for all cases of AML MRD. Next-generation sequencing offers the opportunity to test broadly and deeply for potential genetic evidence of residual AML, and while not currently accepted for such use clinically, is likely to be increasingly used for AML MRD testing in the future.
Collapse
Affiliation(s)
- Jack Ghannam
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura W Dillon
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Lee JM, Kim YJ, Park SS, Han E, Kim M, Kim Y. Simultaneous Monitoring of Mutation and Chimerism Using Next-Generation Sequencing in Myelodysplastic Syndrome. J Clin Med 2019; 8:jcm8122077. [PMID: 31795155 PMCID: PMC6947461 DOI: 10.3390/jcm8122077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/02/2019] [Accepted: 11/21/2019] [Indexed: 01/27/2023] Open
Abstract
Monitoring minimal residual disease (MRD) provides important information during treatment of hematologic malignancies. Chimerism analysis also provides key information after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Recent advances in next-generation sequencing (NGS) have enabled identification of various mutations and quantification of mutant allele burden. In this study, we developed a new analytic algorithm to monitor chimerism applicable to NGS multi-gene panel in use to identify mutations of myelodysplastic syndrome (MDS). We enrolled patients who were diagnosed with MDS and received allo-HSCT and their corresponding donors. Monitoring MRD by NGS assay was performed using 53 DNA samples by calculating mutant allele burden after treatment. For monitoring chimerism by NGS, we selected 121 single nucleotide polymorphisms (SNPs) after careful stepwise evaluation and calculated average donor allele burden. Data obtained from NGS were compared with bone marrow findings, chromosome analysis and short tandem repeat (STR)-based chimerism. SNP-based NGS chimerism analysis was accurate and even superior to conventional STR method by overcoming the various technical limitations of STR. In addition, simultaneous monitoring of mutation and chimerism using NGS could implement comprehensive pre- and post-HSCT monitoring of various clinical conditions such as complete donor chimerism, persistent mixed chimerism, early relapse, and even donor cell-derived diseases.
Collapse
Affiliation(s)
- Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-J.K.)
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.-J.K.)
| | - Eunhee Han
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (M.K.); (Y.K.); Tel.: +82-2-2258-1645 (M.K.); +82-2-2258-1642 (Y.K.)
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (J.-M.L.); (E.H.)
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: (M.K.); (Y.K.); Tel.: +82-2-2258-1645 (M.K.); +82-2-2258-1642 (Y.K.)
| |
Collapse
|
15
|
Balagopal V, Hantel A, Kadri S, Steinhardt G, Zhen CJ, Kang W, Wanjari P, Ritterhouse LL, Stock W, Segal JP. Measurable residual disease monitoring for patients with acute myeloid leukemia following hematopoietic cell transplantation using error corrected hybrid capture next generation sequencing. PLoS One 2019; 14:e0224097. [PMID: 31658273 PMCID: PMC6816574 DOI: 10.1371/journal.pone.0224097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/05/2019] [Indexed: 12/22/2022] Open
Abstract
Improved systems for detection of measurable residual disease (MRD) in acute myeloid leukemia (AML) are urgently needed, however attempts to utilize broad-scale next-generation sequencing (NGS) panels to perform multi-gene surveillance in AML post-induction have been stymied by persistent premalignant mutation-bearing clones. We hypothesized that this technology may be more suitable for evaluation of fully engrafted patients following hematopoietic cell transplantation (HCT). To address this question, we developed a hybrid-capture NGS panel utilizing unique molecular identifiers (UMIs) to detect variants at 0.1% VAF or below across 22 genes frequently mutated in myeloid disorders and applied it to a retrospective sample set of blood and bone marrow DNA samples previously evaluated as negative for disease via standard-of-care short tandem repeat (STR)-based engraftment testing and hematopathology analysis in our laboratory. Of 30 patients who demonstrated trackable mutations in the 22 genes at eventual relapse by standard NGS analysis, we were able to definitively detect relapse-associated mutations in 18/30 (60%) at previously disease-negative timepoints collected 20-100 days prior to relapse date. MRD was detected in both bone marrow (15/28, 53.6%) and peripheral blood samples (9/18, 50%), while showing excellent technical specificity in our sample set. We also confirmed the disappearance of all MRD signal with increasing time prior to relapse (>100 days), indicating true clinical specificity, even using genes commonly associated with clonal hematopoiesis of indeterminate potential (CHIP). This study highlights the efficacy of a highly sensitive, NGS panel-based approach to early detection of relapse in AML and supports the clinical validity of extending MRD analysis across many genes in the post-transplant setting.
Collapse
Affiliation(s)
- Vidya Balagopal
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Andrew Hantel
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Sabah Kadri
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - George Steinhardt
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Chao Jie Zhen
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Wenjun Kang
- Center for Research Informatics, The University of Chicago, Chicago, Illinois, United States of America
| | - Pankhuri Wanjari
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lauren L. Ritterhouse
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Wendy Stock
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeremy P. Segal
- Department of Pathology, Division of Genomic and Molecular Pathology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lyu XD, Zou Z, Peng H, Fan RH, Song YP. [Application of multiple nucleotide polymorphism analysis in chimerism detection after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:662-666. [PMID: 31495133 PMCID: PMC7342881 DOI: 10.3760/cma.j.issn.0253-2727.2019.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
目的 建立一种利用多核苷酸多态性高通量测序(MNPseq)分析异基因造血干细胞移植后嵌合状态的新方法,并探讨其可行性及优越性。 方法 筛选100个MNP片段,采用高通量测序技术,通过模拟嵌合样本和临床移植后样本,与STR法、融合基因定量检测和流式细胞术微小残留病检测进行对比,验证方法的准确性和敏感性。 结果 MNPseq的准确性和敏感性均优于STR法,其中敏感性为0.01%,较STR法敏感约100倍;MNPseq可以进一步区分STR完全嵌合的42份样本,且经Cutoff值校正后,与融合基因定量检测结果相关;MNPseq可以纠正因为影子峰所造成的STR法的假阳性,并且可以用于检测缺乏供者和(或)患者移植前信息的嵌合体标本。 结论 基于高通量测序的MNPseq分析是一种更加准确和敏感的嵌合体检测方法,而且解决了缺乏移植前信息无法检测嵌合体的问题,具有极高的临床应用价值。
Collapse
Affiliation(s)
- X D Lyu
- Central Lab, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Z Zou
- Central Lab, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - H Peng
- Institute of Systematic Biology, Jianghan University, Wuhan 430056, China
| | - R H Fan
- Central Lab, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Y P Song
- Department of Hematology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
17
|
McReynolds LJ, Zhang Y, Yang Y, Tang J, Mulé M, Hsu AP, Townsley DM, West RR, Zhu J, Hickstein DD, Holland SM, Calvo KR, Hourigan CS. Rapid progression to AML in a patient with germline GATA2 mutation and acquired NRAS Q61K mutation. Leuk Res Rep 2019; 12:100176. [PMID: 31245276 PMCID: PMC6582196 DOI: 10.1016/j.lrr.2019.100176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022] Open
Abstract
GATA2 deficiency syndrome is caused by autosomal dominant, heterozygous germline mutations with widespread effects on immune, pulmonary and vascular systems. Patients commonly develop hematological abnormalities including bone marrow failure, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). We present a patient with GATA2 mutation and MDS who progressed to AML over four months. Whole exome and targeted deep sequencing identified a new p.Q61K NRAS mutation in the bone marrow at the time of AML development. Rapid development of AML is possible in the setting of germline GATA2 mutation despite stable MDS, supporting close monitoring and consideration of early allogeneic transplantation.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yubo Zhang
- DNA Sequencing and Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yanqin Yang
- DNA Sequencing and Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jingrong Tang
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Matthew Mulé
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Danielle M Townsley
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,MedImmune, Gaithersburg, MD, United States
| | - Robert R West
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jun Zhu
- DNA Sequencing and Genomics Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dennis D Hickstein
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Christopher S Hourigan
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Ehinger M, Pettersson L. Measurable residual disease testing for personalized treatment of acute myeloid leukemia. APMIS 2019; 127:337-351. [PMID: 30919505 DOI: 10.1111/apm.12926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
This review summarizes - with the practicing hematologist in mind - the methods used to determine measurable residual disease (MRD) in everyday practice with some future perspectives, and the current knowledge about the prognostic impact of MRD on outcome in acute myeloid leukemia (AML), excluding acute promyelocytic leukemia. Possible implications for choice of MRD method, timing of MRD monitoring, and guidance of therapy are discussed in general and in some detail for certain types of leukemia with specific molecular markers to monitor, including core binding factor (CBF)-leukemias and NPM1-mutated leukemias.
Collapse
Affiliation(s)
- Mats Ehinger
- Department of Clinical Sciences, Pathology, Skane University Hospital, Lund University, Lund, Sweden
| | - Louise Pettersson
- Department of Pathology, Halland Hospital Halmstad, Region Halland, Halmstad, Sweden.,Faculty of Medicine, Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Dillon LW, Hayati S, Roloff GW, Tunc I, Pirooznia M, Mitrofanova A, Hourigan CS. Targeted RNA-sequencing for the quantification of measurable residual disease in acute myeloid leukemia. Haematologica 2018; 104:297-304. [PMID: 30171026 PMCID: PMC6355494 DOI: 10.3324/haematol.2018.203133] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Great effort is spent on developing therapies to improve the dire outcomes of those diagnosed with acute myeloid leukemia. The methods for quantifying response to therapeutic intervention have however lacked sensitivity. Patients achieving a complete remission as defined by conventional cytomorphological methods therefore remain at risk of subsequent relapse due to disease persistence. Improved risk stratification is possible based on tests designed to detect this residual leukemic burden (measurable residual disease). However, acute myeloid leukemia is a genetically diverse set of diseases, which has made it difficult to develop a single, highly reproducible, and sensitive assay for measurable residual disease. Here we present the development of a digital targeted RNA-sequencing-based approach designed to overcome these limitations by detecting all newly approved European LeukemiaNet molecular targets for measurable residual disease in acute myeloid leukemia in a single standardized assay. Iterative modifications and novel bioinformatics approaches resulted in a greater than 100-fold increase in performance compared with commercially available targeted RNA-sequencing approaches and a limit of detection as low as one leukemic cell in 100,000 cells measured, which is comparable to quantitative polymerase chain reaction analysis, the current gold standard for the detection of measurable residual disease. This assay, which can be customized and expanded, is the first demonstrated use of high-sensitivity RNA-sequencing for measurable residual disease detection in acute myeloid leukemia and could serve as a broadly applicable standardized tool.
Collapse
Affiliation(s)
- Laura W Dillon
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Sheida Hayati
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ
| | - Gregory W Roloff
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ilker Tunc
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Rutgers, The State University of New Jersey, Newark, NJ
| | - Christopher S Hourigan
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Onecha E, Linares M, Rapado I, Ruiz-Heredia Y, Martinez-Sanchez P, Cedena T, Pratcorona M, Oteyza JP, Herrera P, Barragan E, Montesinos P, Vela JAG, Magro E, Anguita E, Figuera A, Riaza R, Martinez-Barranco P, Sanchez-Vega B, Nomdedeu J, Gallardo M, Martinez-Lopez J, Ayala R. A novel deep targeted sequencing method for minimal residual disease monitoring in acute myeloid leukemia. Haematologica 2018; 104:288-296. [PMID: 30093399 PMCID: PMC6355493 DOI: 10.3324/haematol.2018.194712] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
A high proportion of patients with acute myeloid leukemia who achieve minimal residual disease negative status ultimately relapse because a fraction of pathological clones remains undetected by standard methods. We designed and validated a high-throughput sequencing method for minimal residual disease assessment of cell clonotypes with mutations of NPM1, IDH1/2 and/or FLT3-single nucleotide variants. For clinical validation, 106 follow-up samples from 63 patients in complete remission were studied by sequencing, evaluating the level of mutations detected at diagnosis. The predictive value of minimal residual disease status by sequencing, multiparameter flow cytometry, or quantitative polymerase chain reaction analysis was determined by survival analysis. The sequencing method achieved a sensitivity of 10−4 for single nucleotide variants and 10−5 for insertions/deletions and could be used in acute myeloid leukemia patients who carry any mutation (86% in our diagnostic data set). Sequencing–determined minimal residual disease positive status was associated with lower disease-free survival (hazard ratio 3.4, P=0.005) and lower overall survival (hazard ratio 4.2, P<0.001). Multivariate analysis showed that minimal residual disease positive status determined by sequencing was an independent factor associated with risk of death (hazard ratio 4.54, P=0.005) and the only independent factor conferring risk of relapse (hazard ratio 3.76, P=0.012). This sequencing-based method simplifies and standardizes minimal residual disease evaluation, with high applicability in acute myeloid leukemia. It is also an improvement upon flow cytometry- and quantitative polymerase chain reaction-based prediction of outcomes of patients with acute myeloid leukemia and could be incorporated in clinical settings and clinical trials.
Collapse
Affiliation(s)
- Esther Onecha
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Maria Linares
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Inmaculada Rapado
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid
| | - Yanira Ruiz-Heredia
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | | | - Teresa Cedena
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid.,Complutense University, Madrid
| | - Marta Pratcorona
- Hematology Department, Hospital Santa Creu i Sant Pau, Barcelona
| | | | - Pilar Herrera
- Hematology Department, Hospital Universitario Ramon y Cajal, Madrid
| | - Eva Barragan
- Complutense University, Madrid.,Hematology Department, Hospital Universitario La Fe, Valencia
| | - Pau Montesinos
- Complutense University, Madrid.,Hematology Department, Hospital Universitario La Fe, Valencia
| | | | - Elena Magro
- Hematology Department, Hospital Universitario Principe de Asturias, Madrid
| | - Eduardo Anguita
- Hematology Department, Hospital Clínico San Carlos, IdISSC, UCM, Madrid
| | - Angela Figuera
- Hematology Department, Hospital Universitario de la Princesa, Madrid
| | - Rosalia Riaza
- Hematology Department, Hospital Universitario Severo Ochoa, Madrid
| | | | - Beatriz Sanchez-Vega
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Josep Nomdedeu
- Hematology Department, Hospital Santa Creu i Sant Pau, Barcelona
| | - Miguel Gallardo
- Hematological Malignancies Clinical Research Unit, CNIO, Madrid
| | - Joaquin Martinez-Lopez
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid.,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid.,Complutense University, Madrid
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid .,Hematological Malignancies Clinical Research Unit, CNIO, Madrid.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid.,Complutense University, Madrid
| |
Collapse
|
21
|
Kim J, Hwang IS, Shin S, Choi JR, Lee ST. SNP-based next-generation sequencing reveals low-level mixed chimerism after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2018; 97:1731-1734. [DOI: 10.1007/s00277-018-3325-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
|
22
|
Boyer T, Gonzales F, Plesa A, Peyrouze P, Barthelemy A, Guihard S, Quesnel B, Roumier C, Preudhomme C, Cheok M. Flow Cytometry to Estimate Leukemia Stem Cells in Primary Acute Myeloid Leukemia and in Patient-derived-xenografts, at Diagnosis and Follow Up. J Vis Exp 2018. [PMID: 29630051 DOI: 10.3791/56976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous, and if not treated, fatal disease. It is the most common cause of leukemia-associated mortality in adults. Initially, AML is a disease of hematopoietic stem cells (HSC) characterized by arrest of differentiation, subsequent accumulation of leukemia blast cells, and reduced production of functional hematopoietic elements. Heterogeneity extends to the presence of leukemia stem cells (LSC), with this dynamic cell compartment evolving to overcome various selection pressures imposed upon during leukemia progression and treatment. To further define the LSC population, the addition of CD90 and CD45RA allows the discrimination of normal HSCs and multipotent progenitors within the CD34+CD38- cell compartment. Here, we outline a protocol to detect simultaneous expression of several putative LSC markers (CD34, CD38, CD45RA, CD90) on primary blast cells of human AML by multiparametric flow cytometry. Furthermore, we show how to quantify three progenitor populations and a putative LSC population with increasing degree of maturation. We confirmed the presence of these populations in corresponding patient-derived-xenografts. This method of detection and quantification of putative LSC may be used for clinical follow-up of chemotherapy response (i.e., minimal residual disease), as residual LSC may cause AML relapse.
Collapse
Affiliation(s)
- Thomas Boyer
- Laboratoire d'hématologie, CHU Lille; Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer
| | - Fanny Gonzales
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Service d'hématologie pédiatrique, hôpital Jeanne de Flandre, CHU Lille
| | | | - Pauline Peyrouze
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer
| | - Adeline Barthelemy
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer
| | - Soizic Guihard
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer
| | - Bruno Quesnel
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer; Service des Maladies du Sang, hôpital Claude Huriez, CHU Lille
| | - Christophe Roumier
- Laboratoire d'hématologie, CHU Lille; Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer
| | - Claude Preudhomme
- Laboratoire d'hématologie, CHU Lille; Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer
| | - Meyling Cheok
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer;
| |
Collapse
|