1
|
Laurino S, Russi S, Sabato C, Luongo M, Laurenziello P, Vagliasindi A, Di Stefano G, Vita GAC, Patitucci G, Amendola E, Zoppoli P, Albano F, Balzamo C, Notarangelo T, Falco G. The inhibition of SLC8A1 promotes Ca 2+-dependent cell death in Gastric Cancer. Biomed Pharmacother 2025; 182:117787. [PMID: 39731939 DOI: 10.1016/j.biopha.2024.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Intracellular Ca2+ homeostasis dysregulation, through the modulation of calcium permeable ion channels and transporters, is gaining attention in cancer research as an apoptosis evasion mechanism. Recently, we highlighted a prognostic role for several calcium permeable channels. Among them, here, we focused on the plasma membrane bidirectional Na+/Ca2+ exchanger SLC8A1. Data from Kaplan-Meier plotter and The Cancer Genome Atlas were used to evaluate in silico the association of SLC8A1 expression with Gastric Cancer (GC) patients' survival, and its levels in different patient subgroups. In vitro experiments were used to explore SLC8A1 as a possible target in GC. Interestingly, SLC8A1 expression was associated with a worst prognosis, and resulted up-regulated in diffuse/poorly-cohesive histological GC type, Genomically Stable samples and in advanced TNM stages. We demonstrated that SLC8A1 selective pharmacological inhibition, through CB-DMB, significantly reduced cancer proliferation and induced Ca2+-dependent cell death in GC cells, both alone and synergically with cisplatin treatment. SLC8A1 inhibition could represents a potential subgroup-specific therapeutic approach for GC patients based on its ability to induce Ca2+-dependent cell death.
Collapse
Affiliation(s)
- Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy.
| | - Claudia Sabato
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Margherita Luongo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Pasqualina Laurenziello
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Alessio Vagliasindi
- Unit of Abdominal Oncological Surgery, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Greta Di Stefano
- Unit of Abdominal Oncological Surgery, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Giulia Anna Carmen Vita
- Anatomical Pathology Department, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Giuseppe Patitucci
- Anatomical Pathology Department, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Elena Amendola
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Pietro Zoppoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Francesco Albano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Chiara Balzamo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notarangelo
- Laboratory of Preclinical and Translational Research, IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ, Italy
| | - Geppino Falco
- Department of Biology, University of Naples Federico II, Naples, Italy; Biogem, Istituto di Biologia e Genetica Molecolare, Ariano Irpino, AV, Italy
| |
Collapse
|
2
|
Albano F, Russi S, Laurino S, Mazzone P, Di Paola G, Zoppoli P, Amendola E, Balzamo C, Bartolo O, Ciuffi M, Ignomirelli O, Sgambato A, Galasso R, De Felice M, Falco G, Calice G. Representing ECM composition and EMT pathways in gastric cancer using a new metastatic gene signature. Front Cell Dev Biol 2024; 12:1481818. [PMID: 39563861 PMCID: PMC11573575 DOI: 10.3389/fcell.2024.1481818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Gastric cancer (GC) is an aggressive and heterogeneous malignancy marked by cellular and molecular diversity. In GC, cancer cells invade locally in the stomach at stage I and can progress to metastasis in distant organs by stage IV, where it often becomes fatal. Methods We analyzed gene expression profiles from 719 stage I and stage IV GC patients across seven public datasets, conducting functional enrichment analysis to identify a gene signature linked to disease progression. Additionally, we developed an in vitro model of a simplified extracellular matrix (ECM) for cell-based assays. Results Our analysis identified a progression-associated gene signature (APOD, COL1A2, FSTL1, GEM, LUM, and SPARC) that characterizes stage IV GC. This signature is associated with ECM organization and epithelial-to-mesenchymal transition (EMT), both of which influence the tumor microenvironment by promoting cell invasion and triggering EMT. Discussion This gene signature may help identify stage I GC patients at higher risk, offering potential utility in early-stage patient management. Furthermore, our experimental ECM model may serve as a platform for investigating molecular mechanisms underlying metastatic spread in gastric cancer.
Collapse
Affiliation(s)
- Francesco Albano
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero inVulture, Italy
- Laboratory of Stem Cell Biology, Department of Biology, University Federico II of Napoli, Napoli, Italy
- Laboratory of Stemness and Tissue Regeneration, Biogem S.c.a.r.l., Ariano Irpino, Italy
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero inVulture, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero inVulture, Italy
| | - Pellegrino Mazzone
- Laboratory of Stemness and Tissue Regeneration, Biogem S.c.a.r.l., Ariano Irpino, Italy
| | - Giuseppina Di Paola
- Laboratory of Stemness and Tissue Regeneration, Biogem S.c.a.r.l., Ariano Irpino, Italy
| | - Pietro Zoppoli
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Napoli, Italy
| | - Elena Amendola
- Laboratory of Stem Cell Biology, Department of Biology, University Federico II of Napoli, Napoli, Italy
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Chiara Balzamo
- Laboratory of Stem Cell Biology, Department of Biology, University Federico II of Napoli, Napoli, Italy
| | - Ottavia Bartolo
- Endoscopy Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero inVulture, Italy
| | - Mario Ciuffi
- Endoscopy Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero inVulture, Italy
| | - Orazio Ignomirelli
- Endoscopy Unit, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero inVulture, Italy
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Catholic University of Sacro Cuore, Roma, Italy
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB) Via Padre Pio 1, Rionero inVulture, Italy
| | - Rocco Galasso
- Scientific Direction, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB) Via Padre Pio 1, Rionero inVulture, Italy
| | - Mario De Felice
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Napoli, Italy
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale "Gaetano Salvatore" (IEOS), Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Geppino Falco
- Laboratory of Stem Cell Biology, Department of Biology, University Federico II of Napoli, Napoli, Italy
- Laboratory of Stemness and Tissue Regeneration, Biogem S.c.a.r.l., Ariano Irpino, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero inVulture, Italy
| |
Collapse
|
3
|
Ding M, Han R, Xie Y, Wei Z, Xue S, Zhang F, Cao Z. Plumbagin, a novel TRPV2 inhibitor, ameliorates microglia activation and brain injury in a middle cerebral artery occlusion/reperfusion mouse model. Br J Pharmacol 2024. [PMID: 39363399 DOI: 10.1111/bph.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient receptor potential vanilloid 2 (TRPV2) is a Ca2+-permeable non-selective cation channel. Despite the significant roles of TRPV2 in immunological response, cancer progression and cardiac development, pharmacological probes of TRPV2 remain to be identified. We aimed to discover TRPV2 inhibitors and to elucidate their molecular mechanism of action. EXPERIMENTAL APPROACH Fluorescence-based Ca2+ assay in HEK-293 cells expressing murine TRPV2 was used to identify plumbagin as a novel TRPV2 inhibitor. Patch-clamp, in silico docking and site-directed mutagenesis were applied to investigate the molecular mechanisms critical for plumbagin interaction. ELISA and qPCR were used to assess nitric oxide release and mRNA levels of inflammatory mediators, respectively. si-RNA interference was used to knock down TRPV2 expression, which was validated by western blotting. Neurological and histological analyses were used to examine brain injury of mice following middle cerebral artery occlusion/reperfusion (MCAO/R). KEY RESULTS Plumbagin is a potent TRPV2 negative allosteric modulator with an IC50 value of 0.85 μM, exhibiting >14-fold selectivity over TRPV1, TRPV3 and TRPV4. Plumbagin suppresses TRPV2 activity by decreasing the channel open probability without affecting the unitary conductance. Moreover, plumbagin binds to an extracellular pocket formed by the pore helix and flexible loop between transmembrane helices S5 and S6 of TRPV2. Plumbagin effectively suppresses LPS-induced inflammation of BV-2 microglia and ameliorates brain injury of MCAO/R mice. CONCLUSION AND IMPLICATIONS Plumbagin is a novel pharmacological probe to study TRPV2 pathophysiology. TRPV2 is a novel molecular target for the treatment of neuroinflammation and ischemic stroke.
Collapse
Affiliation(s)
- Meihuizi Ding
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui Han
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Xie
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ziyi Wei
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuwen Xue
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Pan T, Gao Y, Xu G, Yu L, Xu Q, Yu J, Liu M, Zhang C, Ma Y, Li Y. Widespread transcriptomic alterations of transient receptor potential channel genes in cancer. Brief Funct Genomics 2024; 23:214-227. [PMID: 37288496 DOI: 10.1093/bfgp/elad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
Ion channels, in particular transient-receptor potential (TRP) channels, are essential genes that play important roles in many physiological processes. Emerging evidence has demonstrated that TRP genes are involved in a number of diseases, including various cancer types. However, we still lack knowledge about the expression alterations landscape of TRP genes across cancer types. In this review, we comprehensively reviewed and summarised the transcriptomes from more than 10 000 samples in 33 cancer types. We found that TRP genes were widespreadly transcriptomic dysregulated in cancer, which was associated with clinical survival of cancer patients. Perturbations of TRP genes were associated with a number of cancer pathways across cancer types. Moreover, we reviewed the functions of TRP family gene alterations in a number of diseases reported in recent studies. Taken together, our study comprehensively reviewed TRP genes with extensive transcriptomic alterations and their functions will directly contribute to cancer therapy and precision medicine.
Collapse
Affiliation(s)
- Tao Pan
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yueying Gao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Gang Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | | | - Qi Xu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Jinyang Yu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Meng Liu
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Can Zhang
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| | - Yongsheng Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Department of Reproductive Medicine, the First Affliated Hospital of Hainan Medical University, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, Hainan 571199, China
| |
Collapse
|
5
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
6
|
Szallasi A. "ThermoTRP" Channel Expression in Cancers: Implications for Diagnosis and Prognosis (Practical Approach by a Pathologist). Int J Mol Sci 2023; 24:9098. [PMID: 37240443 PMCID: PMC10219044 DOI: 10.3390/ijms24109098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Temperature-sensitive transient receptor potential (TRP) channels (so-called "thermoTRPs") are multifunctional signaling molecules with important roles in cell growth and differentiation. Several "thermoTRP" channels show altered expression in cancers, though it is unclear if this is a cause or consequence of the disease. Regardless of the underlying pathology, this altered expression may potentially be used for cancer diagnosis and prognostication. "ThermoTRP" expression may distinguish between benign and malignant lesions. For example, TRPV1 is expressed in benign gastric mucosa, but is absent in gastric adenocarcinoma. TRPV1 is also expressed both in normal urothelia and non-invasive papillary urothelial carcinoma, but no TRPV1 expression has been seen in invasive urothelial carcinoma. "ThermoTRP" expression can also be used to predict clinical outcomes. For instance, in prostate cancer, TRPM8 expression predicts aggressive behavior with early metastatic disease. Furthermore, TRPV1 expression can dissect a subset of pulmonary adenocarcinoma patients with bad prognosis and resistance to a number of commonly used chemotherapeutic agents. This review will explore the current state of this rapidly evolving field with special emphasis on immunostains that can already be added to the armoire of diagnostic pathologists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
7
|
Urushima H, Matsubara T, Miyakoshi M, Kimura S, Yuasa H, Yoshizato K, Ikeda K. Hypo-osmolarity induces apoptosis resistance via TRPV2-mediated AKT-Bcl-2 pathway. Am J Physiol Gastrointest Liver Physiol 2023; 324:G219-G230. [PMID: 36719093 PMCID: PMC9988531 DOI: 10.1152/ajpgi.00138.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
In cirrhosis, several molecular alterations such as resistance to apoptosis could accelerate carcinogenesis. Recently, mechanotransduction has been attracting attention as one of the causes of these disturbances. In patients with cirrhosis, the serum sodium levels progressively decrease in the later stage of cirrhosis, and hyponatremia leads to serum hypo-osmolality. Since serum sodium levels in patients with cirrhosis with liver cancer are inversely related to cancer's number, size, stage, and cumulative survival, we hypothesized that hypo-osmolality-induced mechanotransduction under cirrhotic conditions might contribute to oncogenesis and/or progression of hepatocellular carcinoma (HCC). In this study, we adjusted osmosis of culture medium by changing the sodium chloride concentration and investigated the influence of hypotonic conditions on the apoptosis resistance of an HCC cell line, HepG2, using a serum-deprivation-induced apoptosis model. By culturing the cells in a serum-free medium, the levels of an antiapoptotic protein Bcl-2 were downregulated. In contrast, the hypotonic conditions caused apoptosis resistance by upregulation of Bcl-2. Next, we examined which pathway was involved in the apoptosis resistance. Hypotonic conditions enhanced AKT signaling, and constitutive activation of AKT in HepG2 cells led to upregulation of Bcl-2. Moreover, we revealed that the enhancement of AKT signaling was caused by intracellular calcium influx via a mechanosensor, TRPV2. Our findings suggested that hyponatremia-induced serum hypotonic in patients with cirrhosis promoted the progression of hepatocellular carcinoma.NEW & NOTEWORTHY Our study first revealed that hypo-osmolarity-induced mechanotransduction enhanced calcium-mediated AKT signaling via TRPV2 activation, resulting in contributing to apoptosis resistance. The finding indicates a possible view that liver cirrhosis-induced hyponatremia promotes hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masaaki Miyakoshi
- Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences Field of Oncology, Kagoshima University, Kagoshima, Japan
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Katsutoshi Yoshizato
- Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Van den Eynde C, Held K, Ciprietti M, De Clercq K, Kerselaers S, Marchand A, Chaltin P, Voets T, Vriens J. Loratadine, an antihistaminic drug, suppresses the proliferation of endometrial stromal cells by inhibition of TRPV2. Eur J Pharmacol 2022; 928:175086. [PMID: 35714693 DOI: 10.1016/j.ejphar.2022.175086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/03/2022]
Abstract
The transient receptor potential (TRP) channel TRPV2 is widely expressed in a variety of different cell types and tissues. However, elucidating the exact biological functions of TRPV2 is significantly hampered by the lack of selective pharmacological tools to modulate channel activity in vitro and in vivo. This study aimed to identify new compounds that modify TRPV2 activity via the use of a plate-based calcium imaging approach to screen a drug repurposing library. Three antihistaminic drugs, loratadine, astemizole and clemizole were identified to reduce calcium-influx evoked by the TRPV2 agonist tetrahydrocannabivarin in HEK293 cells expressing murine TRPV2. Using single-cell calcium-microfluorimetry and whole-cell patch clamp recordings, we further confirmed that all three compounds induced a concentration-dependent block of TRPV2-mediated Ca2+ influx and whole-cell currents, with loratadine being the most potent antagonist of TRPV2. Moreover, this study demonstrated that loratadine was able to block both the human and mouse TRPV2 orthologs, without inhibiting the activity of other closely related members of the TRPV superfamily. Finally, loratadine inhibited TRPV2-dependent responses in a primary culture of mouse endometrial stromal cells and attenuated cell proliferation and migration in in vitro cell proliferation and wound healing assays. Taken together, our study revealed that the antihistaminic drugs loratadine, astemizole and clemizole target TRPV2 in a concentration-dependent manner. The identification of these antihistaminic drugs as blockers of TRPV2 may form a new starting point for the synthesis of more potent and selective TRPV2 antagonists, which could further lead to the unravelling of the physiological role of the channel.
Collapse
Affiliation(s)
- Charlotte Van den Eynde
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katharina Held
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Martina Ciprietti
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Sara Kerselaers
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Arnaud Marchand
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Patrick Chaltin
- CISTIM Leuven vzw, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium; Centre for Drug Design and Discovery (CD3), KU Leuven, Gaston Geenslaan 2, 3001, Leuven, Heverlee, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department of Development and Regeneration, KU Leuven, Herestraat 49 box 611, 3000, Leuven, Belgium.
| |
Collapse
|
9
|
A TRP Family Based Signature for Prognosis Prediction in Head and Neck Squamous Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8757656. [PMID: 35140788 PMCID: PMC8820906 DOI: 10.1155/2022/8757656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Purpose Head and neck squamous cell carcinoma (HNSCC) is a classical type of head and neck cancers, with heterogeneous clinical outcome. This project is set out to create a robust risk signature based on TRP family genes (TFGs) for prognosis evaluation in HNSCC. Methods Based on the HNSCC sample data from the TCGA website, we integrated expression profile of TFGs for 490 HNSCC cases. We explore the interactions among TFGs using STRING tool. The TFGs-based signature (TFBS) was created by Cox relative analyses. In addition, we conducted GSEA to identify the underlying signaling pathways of the specific TFGs in HNSCC. The immune landscape of HNSCC patients was analyzed by CIBERSORT and ssGSEA algorithms. Results A total of 6 TFGs (TRPC1, TRPC3, TRPC6, TRPV2, TRPV4, and TRPM8) closely associated with prognosis of HNSCC cases were screened to create TFBS. TFBS predicted that the TFBS-high group presented dismal patient outcome. Cox regression revealed the favorable independent value of TFBS. ROC analysis showed the robust power of TFBS for prognosis forecasting. GSEA determined several crucial pathways related with HNSCC, which are the p53 pathway, TNF-alpha signaling via NFKB, and hypoxia. Moreover, immune-related analysis showed that patients in the TFBS-high group were more likely in immunosuppressive status. Conclusion Our proposed TFBS could serve as a favorable indicator to forecast the survival outcome of HNSCC cases and offer prominent therapy guidance.
Collapse
|
10
|
TRP channel expression correlates with the epithelial-mesenchymal transition and high-risk endometrial carcinoma. Cell Mol Life Sci 2021; 79:26. [PMID: 34936030 PMCID: PMC8732886 DOI: 10.1007/s00018-021-04023-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 01/14/2023]
Abstract
Transient receptor potential (TRP) channels excel in cellular sensing as they allow rapid ion influx across the plasma membrane in response to a variety of extracellular cues. Recently, a distinct TRP mRNA expression signature was observed in stromal cells (ESC) and epithelial cells (EEC) of the endometrium, a tissue in which cell phenotypic plasticity is essential for normal functioning. However, it is unknown whether TRP channel mRNA expression is subject to the phenotypic switching that occurs during epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition (MET), and whether TRP channel mRNA expression is associated with aggressive phenotypes in endometrial cancer (EC). Here, we induced EMT and MET in vitro using in primary EEC and ESC, respectively, and analyzed expression and functionality of TRP channels using RT-qPCR and intracellular Ca2+ imaging. The outcome of these experiments showed a strong association between TRPV2 and TRPC1 mRNA expression and the mesenchymal phenotype, whereas TRPM4 mRNA expression correlated with the epithelial phenotype. In line herewith, increased TRPV2 and TRPC1 mRNA expression levels were observed in both primary and metastatic EC biopsies and in primary EC cells with a high EMT status, indicating an association with an aggressive tumor phenotype. Remarkably, TRPV2 mRNA expression in primary EC biopsies was associated with tumor invasiveness and cancer stage. In contrast, increased TRPM4 mRNA expression was observed in EC biopsies with a low EMT status and less aggressive tumor phenotypes. Taken together, this dataset proved for the first time that TRP channel mRNA expression is strongly linked to cellular phenotypes of the endometrium, and that phenotypic transitions caused by either experimental manipulation or malignancy could alter this expression in a predictable manner. These results implicate that TRP channels are viable biomarkers to identify high-risk EC, and potential targets for EC treatment.
Collapse
|
11
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
12
|
Kato S, Shiozaki A, Kudou M, Shimizu H, Kosuga T, Ohashi T, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Otsuji E. TRPV2 Promotes Cell Migration and Invasion in Gastric Cancer via the Transforming Growth Factor-β Signaling Pathway. Ann Surg Oncol 2021; 29:2944-2956. [PMID: 34855064 DOI: 10.1245/s10434-021-11132-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Transient receptor potential vanilloid 2 (TRPV2) is a highly Ca2+-permeable ion channel that is involved in a number of cellular processes. It is expressed in various human cancers; however, the role of TRPV2 in gastric cancer (GC) remains poorly understood. METHODS TRPV2 gene expression was knocked down in GC cell lines by small-interfering RNA (siRNA), and the biological roles of TRPV2 in the proliferation, migration, and invasion of GC cells were then investigated. The gene expression profile of GC was elucidated using a microarray analysis. TRPV2 expression in tumor tissue sections was analyzed by immunohistochemistry. RESULTS The migration and invasion abilities of GC cells were inhibited by the knockdown of TRPV2. Moreover, the microarray assay revealed that TRPV2 was associated with the transforming growth factor (TGF)-β signaling pathway. Immunohistochemical staining showed that the strong expression of TRPV2 correlated with lymphatic invasion, venous invasion, pathological T (pT), pathological N (pN), and a poor prognosis in GC patients. CONCLUSIONS TRPV2 appeared to promote tumor migration and invasion via the TGF-β signaling pathway, and the strong expression of TRPV2 was associated with a worse prognosis in GC patients.
Collapse
Affiliation(s)
- Shunji Kato
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
13
|
Laurino S, Mazzone P, Ruggieri V, Zoppoli P, Calice G, Lapenta A, Ciuffi M, Ignomirelli O, Vita G, Sgambato A, Russi S, Falco G. Cationic Channel TRPV2 Overexpression Promotes Resistance to Cisplatin-Induced Apoptosis in Gastric Cancer Cells. Front Pharmacol 2021; 12:746628. [PMID: 34671260 PMCID: PMC8521017 DOI: 10.3389/fphar.2021.746628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023] Open
Abstract
Gastric cancer (GC) is characterized by poor efficacy and modest clinical impact of current therapies, in which apoptosis evasion is relevant. Intracellular calcium homeostasis dysregulation is associated with apoptosis escaping, and aberrant expression of calcium regulator genes could promote GC drug resistance. Since we previously found a prognostic value for TRPV2 calcium channel expression in GC, we aimed to characterize the role of TRPV2 in cisplatin resistance. Using the TCGA-STAD dataset, we performed a differential gene expression analysis between GC samples in upper and lower tertiles of TRPV2 expression, and then through a gene set analysis, we highlighted the enriched ontology and canonical pathways. We used qRT-PCR to assess TRPV2 expression in three GC cell lines and flow cytometry to evaluate cisplatin-induced cell death rates. Calcium green-1-AM assay was used to estimate differences in intracellular Ca2+ concentrations after inhibition of TRPV2. We engineered AGS cell line to overexpress TRPV2 and used confocal microscopy to quantify its overexpression and localization and flow cytometry to evaluate their sensitivity to cisplatin. Consistent with our hypothesis, among enriched gene sets, we found a significant number of those involved in the regulation of apoptosis. Subsequently, we found an inverse correlation between TRPV2 expression and sensitivity to cisplatin in GC cell lines. Moreover, we demonstrated that inhibition of TRPV2 activity by tranilast blocks the efflux of Ca2+ ions and, in combination with cisplatin, induced a significant increase of apoptotic cells (p = 0.004). We also demonstrated that TRPV2 exogenous expression confers a drug-resistant phenotype, and that tranilast is able to revert this phenotype, restoring cisplatin sensitivity. Our findings consistently suggested that TRPV2 could be a potential target for overcoming cisplatin resistance by promoting apoptosis. Notably, our data are a prerequisite for the potential reposition of tranilast to the treatment of GC patients and anticipate the in vivo evaluation.
Collapse
Affiliation(s)
- Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Pellegrino Mazzone
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy.,UOC Clinical Pathology, Altamura Hospital, Altamura, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Antonella Lapenta
- Trial Office, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Mario Ciuffi
- Endoscopy Unit, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Orazio Ignomirelli
- Endoscopy Unit, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Giulia Vita
- Pathology Unit, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Alessandro Sgambato
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-CROB Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | - Geppino Falco
- Biogem Scarl, Istituto di Ricerche Genetiche "Gaetano Salvatore", Ariano Irpino, Italy.,Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
14
|
Hosami F, Ghadimkhah MH, Salimi V, Ghorbanhosseini SS, Tavakoli-Yaraki M. The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects. Biomed Pharmacother 2021; 144:112279. [PMID: 34624678 DOI: 10.1016/j.biopha.2021.112279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer, as a mysterious and complex disease, has a multi-stage molecular process that uses the cellular molecular machine and multiple signaling pathways to its advantage. Cannabinoids, as terpenophenolic compounds and their derivatives, showed influences on immune system responses, inflammation, and cell growth that have sparked a growing interest in exploring their effects on cancer cell fate, as well. A large body of evidence in experimental models indicating the involvement of cannabinoids and their related receptors in cancer cell growth, development, and fate. In accordance, the present study provided insights regarding the strengths and limits of cannabinoids and their receptors in critical steps of tumorigenesis and its underlying molecular pathways such as; cancer cell proliferation, type of cell death pathway, angiogenesis, invasion, metastasis and, immune system response. Based on the results of the present study and due to the contribution of cannabinoids in various cancer cell growth control processes, these compounds cancer can be considered worthwhile in finding new alternatives for cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Hosami
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Bidar N, Rezaei T, Amini M, Jebelli A, Mokhtarzadeh A, Baradaran B. ZNF677 downregulation by promoter hypermethylation as a driver event through gastric tumorigenesis. Exp Mol Pathol 2021; 121:104663. [PMID: 34171355 DOI: 10.1016/j.yexmp.2021.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide, due to poor prognosis and treatment failure; demanding new diagnostic and therapeutic targets. Therefore, in the present study, the methylation and expression status of ZNF677, as a promising tumor suppressor, were investigated in GC. Gene Expression Omnibus (GEO) datasets were used to initially evaluate ZNF677 expression and methylation in GC samples. Confirmation was performed on fifty internal samples, including gastric tumors and adjacent normal specimens, using q-MSP and q-PCR methods. Further validations were done using The Cancer Genome Atlas (TCGA) data on human cancers. The obtained results in silico and experimentally illustrated that ZNF677 is significantly hypermethylated and downregulated through gastric tumorigenesis. ZNF677 methylation levels were also correlated with perineural invasion (p = 0.0382) in internal samples. Furthermore, Spearman's correlation analysis showed that ZNF677 methylation is negatively (r = -0.4614, p < 0.0001) correlated with its mRNA expression levels. ROC curve analysis also illustrated the high diagnostic value of ZNF677 methylation for early detection of GC (AUC = 0.8592). Gene set enrichment analysis further revealed that ZNF677 participates in the regulation of cellular processes such as cell proliferation in GC. Moreover, in addition to hypermethylation in other malignancies, including breast, lung, and colorectal cancers, ZNF677 was hypermethylated in precancerous gastric tissues with intestinal metaplasia, indicating its methylation as a driver event through tumorigenesis. Taken together, our results suggest ZNF677 as a potential tumor suppressor gene, which could be considered as a diagnostic and therapeutic target for GC.
Collapse
Affiliation(s)
- Negar Bidar
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Tayebeh Rezaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Asiyeh Jebelli
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Saldías MP, Maureira D, Orellana-Serradell O, Silva I, Lavanderos B, Cruz P, Torres C, Cáceres M, Cerda O. TRP Channels Interactome as a Novel Therapeutic Target in Breast Cancer. Front Oncol 2021; 11:621614. [PMID: 34178620 PMCID: PMC8222984 DOI: 10.3389/fonc.2021.621614] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most frequent cancer types worldwide and the first cause of cancer-related deaths in women. Although significant therapeutic advances have been achieved with drugs such as tamoxifen and trastuzumab, breast cancer still caused 627,000 deaths in 2018. Since cancer is a multifactorial disease, it has become necessary to develop new molecular therapies that can target several relevant cellular processes at once. Ion channels are versatile regulators of several physiological- and pathophysiological-related mechanisms, including cancer-relevant processes such as tumor progression, apoptosis inhibition, proliferation, migration, invasion, and chemoresistance. Ion channels are the main regulators of cellular functions, conducting ions selectively through a pore-forming structure located in the plasma membrane, protein–protein interactions one of their main regulatory mechanisms. Among the different ion channel families, the Transient Receptor Potential (TRP) family stands out in the context of breast cancer since several members have been proposed as prognostic markers in this pathology. However, only a few approaches exist to block their specific activity during tumoral progress. In this article, we describe several TRP channels that have been involved in breast cancer progress with a particular focus on their binding partners that have also been described as drivers of breast cancer progression. Here, we propose disrupting these interactions as attractive and potential new therapeutic targets for treating this neoplastic disease.
Collapse
Affiliation(s)
- María Paz Saldías
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Octavio Orellana-Serradell
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Ian Silva
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Boris Lavanderos
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Pablo Cruz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Camila Torres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.,The Wound Repair, Treatment, and Health (WoRTH) Initiative, Santiago, Chile
| |
Collapse
|
17
|
Deng LY, Zeng XF, Tang D, Deng W, Liu HF, Xie YK. Expression and prognostic significance of thrombospondin gene family in gastric cancer. J Gastrointest Oncol 2021; 12:355-364. [PMID: 34012631 DOI: 10.21037/jgo-21-54] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Thrombospondins (THBSs) are glycoproteins expressed in the extracellular matrix (ECM) and have critical roles in tumor development and metastasis. However, the diverse expression patterns and prognostic roles of distinct THBS genes in gastric cancer have not been fully elucidated. In the current study, we aimed to investigate the expression patterns of THBSs in gastric cancer (GC) and determine whether they are prognostic markers for this malignancy. Methods mRNA expression status and genetic mutations of THBS family members were performed by using ONCOMINE, UCSC Xena browser, GEPIA, and cBioPortal databases. Prognostic values and function enrichment analysis of the members were assessed via Kaplan-Meier plotter and Metascape. Results we found that the mRNA expression of THBS1, THBS2, THBS4, and COMP were higher in patients with GC tissues than those in normal gastric mucosa and there was no difference in the mRNA expression of THBS3 between GC and normal tissue. Survival analysis revealed that mRNA levels of THBSs were strongly related to worse OS in GC patients (P<0.05). Overexpression of THBSs indicated poor OS in stage III/IV GC and high expression of THBS1, THBS3, THBS4, and COMP were related to worse OS in stage II GC. Conclusions Bioinformatics analysis revealed a better understanding the value of THBS family members in GC and suggest that THBSs might serve as potential prognostic biomarkers for GC.
Collapse
Affiliation(s)
- Long-Ying Deng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiang-Fu Zeng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Dan Tang
- Department of General Practice, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Deng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hong-Fu Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuan-Kang Xie
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
18
|
Wu S, Chen M, Huang J, Zhang F, Lv Z, Jia Y, Cui YZ, Sun LZ, Wang Y, Tang Y, Verhoeft KR, Li Y, Qin Y, Lin X, Guan XY, Lam KO. ORAI2 Promotes Gastric Cancer Tumorigenicity and Metastasis through PI3K/Akt Signaling and MAPK-Dependent Focal Adhesion Disassembly. Cancer Res 2020; 81:986-1000. [PMID: 33310726 DOI: 10.1158/0008-5472.can-20-0049] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 10/27/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
The ubiquitous second messenger Ca2+ has long been recognized as a key regulator in cell migration. Locally confined Ca2+, in particular, is essential for building front-to-rear Ca2+ gradient, which serves to maintain the morphologic polarity required in directionally migrating cells. However, little is known about the source of the Ca2+ and the mechanism by which they crosstalk between different signaling pathways in cancer cells. Here, we report that calcium release-activated calcium modulator 2 (ORAI2), a poorly characterized store-operated calcium (SOC) channel subunit, predominantly upregulated in the lymph node metastasis of gastric cancer, supports cell proliferation and migration. Clinical data reveal that a high frequency of ORAI2-positive cells in gastric cancer tissues significantly correlated with poor differentiation, invasion, lymph node metastasis, and worse prognosis. Gain- and loss-of-function showed that ORAI2 promotes cell motility, tumor formation, and metastasis in both gastric cancer cell lines and mice. Mechanistically, ORAI2 mediated SOC activity and regulated tumorigenic properties through the activation of the PI3K/Akt signaling pathways. Moreover, ORAI2 enhanced the metastatic ability of gastric cancer cells by inducing FAK-mediated MAPK/ERK activation and promoted focal adhesion disassembly at rear-edge of the cell. Collectively, our results demonstrate that ORAI2 is a novel gene that plays an important role in the tumorigenicity and metastasis of gastric cancer. SIGNIFICANCE: These findings describe the critical role of ORAI2 in gastric cancer cell migration and tumor metastasis and uncover the translational potential to advance drug discovery along the ORAI2 signaling pathway.
Collapse
Affiliation(s)
- Shayi Wu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Miao Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Feifei Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhaojie Lv
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yongxu Jia
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yu-Zhu Cui
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Liang-Zhan Sun
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Ying Wang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Krista R Verhoeft
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China
| | - Yanru Qin
- Department of Clinical Oncology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ka-On Lam
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
19
|
Siveen KS, Nizamuddin PB, Uddin S, Al-Thani M, Frenneaux MP, Janahi IA, Steinhoff M, Azizi F. TRPV2: A Cancer Biomarker and Potential Therapeutic Target. DISEASE MARKERS 2020; 2020:8892312. [PMID: 33376561 PMCID: PMC7746447 DOI: 10.1155/2020/8892312] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/22/2022]
Abstract
The Transient Receptor Potential Vanilloid type-2 (TRPV2) channel exhibits oncogenicity in different types of cancers. TRPV2 is implicated in signaling pathways that mediate cell survival, proliferation, and metastasis. In leukemia and bladder cancer, the oncogenic activity of TRPV2 was linked to alteration of its expression profile. In multiple myeloma patients, TRPV2 overexpression correlated with bone tissue damage and poor prognosis. In prostate cancer, TRPV2 overexpression was associated with the castration-resistant phenotype and metastasis. Loss or inactivation of TRPV2 promoted glioblastoma cell proliferation and increased resistance to CD95-induced apoptotic cell death. TRPV2 overexpression was associated with high relapse-free survival in triple-negative breast cancer, whereas the opposite was found in patients with esophageal squamous cell carcinoma or gastric cancer. Another link was found between TRPV2 expression and either drug-induced cytotoxicity or stemness of liver cancer. Overall, these findings validate TRPV2 as a prime candidate for cancer biomarker and future therapeutic target.
Collapse
Affiliation(s)
- Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Parveen B. Nizamuddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Public Health Department, Ministry of Public Health, Doha, Qatar
| | - Mohamed Al-Thani
- Public Health Department, Ministry of Public Health, Doha, Qatar
| | - Michael Paul Frenneaux
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine, Doha, Qatar
- Weill Cornell University, New York, NY, USA
| | - Fouad Azizi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
20
|
Chinigò G, Fiorio Pla A, Gkika D. TRP Channels and Small GTPases Interplay in the Main Hallmarks of Metastatic Cancer. Front Pharmacol 2020; 11:581455. [PMID: 33132914 PMCID: PMC7550629 DOI: 10.3389/fphar.2020.581455] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential (TRP) cations channels, as key regulators of intracellular calcium homeostasis, play a central role in the essential hallmarks of cancer. Among the multiple pathways in which TRPs may be involved, here we focus our attention on the ones involving small guanosine triphosphatases (GTPases), summarizing the main processes associated with the metastatic cascade, such as migration, invasion and tumor vascularization. In the last decade, several studies have highlighted a bidirectional interplay between TRPs and small GTPases in cancer progression: TRP channels may affect small GTPases activity via both Ca2+-dependent or Ca2+-independent pathways, and, conversely, some small GTPases may affect TRP channels activity through the regulation of their intracellular trafficking to the plasma membrane or acting directly on channel gating. In particular, we will describe the interplay between TRPC1, TRPC5, TRPC6, TRPM4, TRPM7 or TRPV4, and Rho-like GTPases in regulating cell migration, the cooperation of TRPM2 and TRPV2 with Rho GTPases in increasing cell invasiveness and finally, the crosstalk between TRPC1, TRPC6, TRPM8, TRPV4 and both Rho- and Ras-like GTPases in inducing aberrant tumor vascularization.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Alessandra Fiorio Pla
- Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France
| | - Dimitra Gkika
- Laboratoire de Cell Physiology, Université de Lille, Department of Life Sciences, Univ. Lille, Inserm, U1003-PHYCEL, Lille, France.,Univ. Lille, CNRS, INSERM, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
21
|
Marinelli O, Morelli MB, Annibali D, Aguzzi C, Zeppa L, Tuyaerts S, Amantini C, Amant F, Ferretti B, Maggi F, Santoni G, Nabissi M. The Effects of Cannabidiol and Prognostic Role of TRPV2 in Human Endometrial Cancer. Int J Mol Sci 2020; 21:ijms21155409. [PMID: 32751388 PMCID: PMC7432565 DOI: 10.3390/ijms21155409] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies support, both in vitro and in vivo, the anti-cancer effects of cannabidiol (CBD), a transient receptor potential vanilloid 2 (TRPV2) ligand. TRPV2, often dysregulated in tumors, is associated with altered cell proliferation and aggressiveness. Endometrial cancer (EC) is historically divided in type I endometrioid EC and type II non-endometrioid EC, associated with poor prognosis. Treatment options with chemotherapy and combinations with radiation showed only limited efficacy. Since no data are reported concerning TRPV2 expression as well as CBD potential effects in EC, the aim of this study was to evaluate the expression of TRPV2 in biopsies and cell lines as well as the effects of CBD in in vitro models. Overall survival (OS), progression-free survival (PFS), cell viability, migration, and chemo-resistance have been evaluated. Results show that TRPV2 expression increased with the malignancy of the cancer tissue and correlated with shorter PFS (p = 0.0224). Moreover, in vitro TRPV2 over-expression in Ishikawa cell line increased migratory ability and response to cisplatin. CBD reduced cell viability, activating predominantly apoptosis in type I cells and autophagy in mixed type EC cells. The CBD improved chemotherapeutic drugs cytotoxic effects, enhanced by TRPV2 over-expression. Hence, TRPV2 could be considered as a marker for optimizing the therapy and CBD might be a useful therapeutic option as adjuvant therapy.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Autophagy/drug effects
- Cannabidiol/pharmacology
- Carcinoma, Endometrioid/diagnosis
- Carcinoma, Endometrioid/drug therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cisplatin/pharmacology
- Cystadenocarcinoma, Serous/diagnosis
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- Drug Synergism
- Endometrial Neoplasms/diagnosis
- Endometrial Neoplasms/drug therapy
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Middle Aged
- Progression-Free Survival
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- TRPV Cation Channels/antagonists & inhibitors
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
Collapse
Affiliation(s)
- Oliviero Marinelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Daniela Annibali
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
| | - Cristina Aguzzi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Laura Zeppa
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Sandra Tuyaerts
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
| | - Consuelo Amantini
- School of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy;
| | - Frédéric Amant
- Gynecological Oncology Department LKI, Leuven Cancer Institute KU, Leuven-University of Leuven, 3000 Leuven, Belgium; (D.A.); (S.T.); (F.A.)
- Centre for Gynecologic Oncology Amsterdam (CGOA), Antoni Van Leeuwenhoek-Netherlands Cancer Institute (AvL-NKI), University Medical Centra (UMC), 1066 Amsterdam, The Netherlands
| | - Benedetta Ferretti
- Oncologia Medica, Ospedale di San Severino, 62027 San Severino Marche (MC), Italy;
| | - Federica Maggi
- Department of Molecular Medicine, Sapienza University, 00155 Rome, Italy;
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino (MC), Italy; (O.M.); (M.B.M.); (C.A.); (L.Z.); (G.S.)
- Integrative Therapy Discovery Lab, University of Camerino, 62032 Camerino (MC), Italy
- Correspondence: ; Tel.: +39-0737-403306
| |
Collapse
|
22
|
The TRPV2 cation channels: from urothelial cancer invasiveness to glioblastoma multiforme interactome signature. J Transl Med 2020; 100:186-198. [PMID: 31653969 DOI: 10.1038/s41374-019-0333-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Changes in transient receptor potential (TRP) Ca2+ permeable channels are associated with development and progression of different types of cancer. Herein, we report data relative to the expression and function of TRP vanilloid 2 (TRPV2) channels in cancer. Overexpression of TRPV2 is observed in high-grade urothelial cancers and treatment with the TRPV2 agonist cannabidiol induces apoptosis. In prostate cancer, TRPV2 promotes migration and invasion, and TRPV2 overexpression characterizes the castration-resistant phenotype. In breast cancer cells, inhibition of TRPV2 by tranilast reduces the insulin-like growth factor-1 stimulated proliferation. TRPV2 overexpression in triple-negative breast cancer cells is associated with high recurrence-free survival. Increased TRPV2 overexpression is present in patients with esophageal squamous cell carcinoma associated with advanced disease, lymph node metastasis, and poor prognosis. Increased TRPV2 transcripts have been found both in benign hepatoma and in hepatocarcinomas, where TRPV2 expression is associated with portal vein invasion and reduction of cancer stem cell expression. TRPV2 expression and function has been also evaluated in gliomagenesis. This receptor negatively controls survival, proliferation, and resistance to CD95- or BCNU-induced apoptosis. In glioblastoma stem cells, TRPV2 activation promotes differentiation and inhibits the proliferation in vitro and in vivo. In glioblastoma, the TRPV2 is part of an interactome-based signature complex, which is negatively associated with survival, and it is expressed in high risk of recurrence and temozolomide-resistant patients. Finally, also in hematological malignancies, such as myeloma or acute myeloid leukemia, TRPV2 might represent a target for novel therapeutic approaches. Overall, these findings demonstrate that TRPV2 exhibits an oncogenic activity in different types of cancers, controlling survival, proliferation, migration, angiogenesis, and invasion signaling pathways. Thus, it prompts the pharmacological use of TRPV2 targeting in the control of cancer progression.
Collapse
|
23
|
Ding J, Jin Z, Yang X, Lou J, Shan W, Hu Y, Du Q, Liao Q, Xu J, Xie R. Plasma membrane Ca 2+-permeable channels and sodium/calcium exchangers in tumorigenesis and tumor development of the upper gastrointestinal tract. Cancer Lett 2020; 475:14-21. [PMID: 32004573 DOI: 10.1016/j.canlet.2020.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022]
Abstract
The upper gastrointestinal (GI) tumors are multifactorial diseases associated with a combination of oncogenes and environmental factors. Currently, surgery, chemotherapy, radiotherapy and immunotherapy are relatively effective treatment options for the patients with these tumors. However, the asymptomatic phenotype of these tumors during the early stages poses as a significant limiting factor to diagnosis and often renders treatments ineffective. Therefore, new early diagnosis and effective therapy for upper GI tumors are urgently needed. Ca2+ is a pivotal intracellular second messenger and plays a crucial role in living cells by regulating several processes from cell division to death. The aberrant Ca2+ homeostasis is related to many human pathological conditions and diseases, including cancer, and thus the changes in the expression and function of plasma membrane Ca2+ permeable channels and sodium/calcium exchangers are frequently described in tumorigenesis and tumor development of the upper GI tract, including voltage-gated Ca2+ channels (VGCC), transient receptor potential (TRP) channels, store-operated channels (SOC) and Na+/Ca2+ exchanger (NCX). This review will summarize the current knowledge about plasma membrane Ca2+ permeable channels and sodium/calcium exchangers in the upper GI tumors and provide a synopsis of recent advancements on the role and involvement of these channels in upper GI tumors as well as a discussion of the possible strategies to target these channels and exchangers for diagnosis and therapy of the upper GI tumors.
Collapse
Affiliation(s)
- JianHong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Xiaoxu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Weixi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Yanxia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Qiushi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China
| | - Jingyu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China.
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, 563003, PR China.
| |
Collapse
|
24
|
Kudou M, Shiozaki A, Yamazato Y, Katsurahara K, Kosuga T, Shoda K, Arita T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Marunaka Y, Otsuji E. The expression and role of TRPV2 in esophageal squamous cell carcinoma. Sci Rep 2019; 9:16055. [PMID: 31690728 PMCID: PMC6831681 DOI: 10.1038/s41598-019-52227-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Transient receptor potential vanilloid 2 (TRPV2) was recently shown to be involved in migrant potentials. The present study aimed to investigate its role in esophageal squamous cell carcinoma (ESCC). Methods: Knockdown experiments were conducted using TRPV2 siRNA in human ESCC cell lines, and anti-tumor effects were analyzed. The gene expression profiles of cells were analyzed using a microarray method. An immunohistochemical staining was performed on 62 primary tumor samples. Results: TRPV2 overexpression was observed in TE15 and KYSE170 cells. TRPV2 depletion suppressed proliferation, cell cycle progression, and invasion/migration ability, and induced apoptosis. A pathway analysis of microarray data showed that TRPV2 depletion down-regulated WNT/β-catenin signaling-related genes and basal cell carcinoma signaling-related genes. The suppression of tumor functions, such as proliferation, invasion, and angiogenesis, was predicted in the ontology analysis. Immunohistochemical analysis revealed a correlation between strong TRPV2 expression and a poor prognosis in ESCC patients. Conclusion: The present results suggest that TRPV2 regulates cancer progression by affecting WNT/β-catenin or basal cell carcinoma signaling, and that TRPV2 strong expression is associated with a worse prognosis in ESCC patients. These results provide an insight into the role of TRPV2 as a novel therapeutic target or biomarker for ESCC.
Collapse
Affiliation(s)
- Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.
| | - Yuzo Yamazato
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Keita Katsurahara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, 604-8472, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| |
Collapse
|
25
|
High Expression of TTYH3 is Related to Poor Clinical Outcomes in Human Gastric Cancer. J Clin Med 2019; 8:jcm8111762. [PMID: 31652813 PMCID: PMC6912211 DOI: 10.3390/jcm8111762] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Ion channels play important roles in regulating various cellular processes and malignant transformation. Expressions of some chloride channels have been suggested to be associated with patient survival in gastric cancer (GC). However, little is known about the expression and function of TTYH3, a gene encoding a chloride ion channel, in cancer progression. Here, we comprehensively analyzed the expression of TTYH3 and its clinical outcome in GC using publicly available cancer gene expression and patient survival data through various databases. We examined the differences of TTYH3 expression between cancers and their normal tissues using the Oncomine, UALCAN, and GEO (Gene Expression Omnibus) databases. TTYH3 expression was investigated from immunohistochemistry images using the Human Protein Atlas database. Copy number alterations and mutations of TTYH3 were analyzed using cBioPortal. The co-expression profile of TTYH3 in GC was revealed using Oncomine. The gene ontology and pathway analyses were done using those co-expressed genes via the Enrichr tool to explore the predicted signaling pathways in GC. TTYH3 mRNA and protein levels in GC were significantly greater than those in normal tissue. Kaplan–Meier analysis revealed the upregulation of TTYH3 expression, which was significantly correlated with worse patient survival. Collectively, our data suggest that TTYH3 might be a potential prognostic marker for GC patients.
Collapse
|
26
|
Russi S, Verma HK, Laurino S, Mazzone P, Storto G, Nardelli A, Zoppoli P, Calice G, La Rocca F, Sgambato A, Lucci V, Falco G, Ruggieri V. Adapting and Surviving: Intra and Extra-Cellular Remodeling in Drug-Resistant Gastric Cancer Cells. Int J Mol Sci 2019; 20:3736. [PMID: 31370155 PMCID: PMC6695752 DOI: 10.3390/ijms20153736] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the significant recent advances in clinical practice, gastric cancer (GC) represents a leading cause of cancer-related deaths in the world. In fact, occurrence of chemo-resistance still remains a daunting hindrance to effectiveness of the current approach to GC therapy. There is accumulating evidence that a plethora of cellular and molecular factors is implicated in drug-induced phenotypical switching of GC cells. Among them, epithelial-mesenchymal transition (EMT), autophagy, drug detoxification, DNA damage response and drug target alterations, have been reported as major determinants. Intriguingly, resistant GC phenotype may be the result of GC cell-induced tumor microenvironment (TME) remodeling, which is currently emerging as a key player in promoting drug resistance and overcoming cytotoxic effects of drugs. In this review, we discuss the possible mechanisms of drug resistance and their involvement in determining current GC therapies failure.
Collapse
Affiliation(s)
- Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Henu Kumar Verma
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Napoli, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Alessandro Sgambato
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Geppino Falco
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy.
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| |
Collapse
|