1
|
Shi J, Shen L, Xiao Y, Wan C, Wang B, Zhou P, Zhang J, Han W, Yu F. Sub-inhibitory concentrations of tigecycline could attenuate the virulence of Staphylococcus aureus by inhibiting the product of α-toxin. Microbiol Spectr 2025; 13:e0134424. [PMID: 40105354 PMCID: PMC12053908 DOI: 10.1128/spectrum.01344-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
Staphylococcus aureus (S. aureus) infection is a serious threat to global health. This study aimed to investigate the anti-virulence efficacy of tigecycline against S. aureus. We used highly virulent S. aureus strains SA75 and JP30 to evaluate the effect of tigecycline on virulence, both of them isolated from the clinic. The MIC value of tigecycline against SA75 was 0.125 µg/mL, and that against JP30 was 0.25 µg/mL. Tigecycline did not affect the growth ability of bacteria at 0.015 µg/mL. Thus, subsequent discussions will focus on the effect of antibiotics at the latter subinhibitory concentrations that did not affect growth. First, the sub-MICs of tigecycline not only enhanced the sensitivity of S. aureus to oxidants and human whole blood but also weakened the hemolytic activity and cell adhesion level of S. aureus. Second, it undermined the survival of S. aureus in RAW264.7 and attenuated the macrophage inflammatory response induced by S. aureus. On the contrary, tigecycline decreased the hemolytic activity, as well as the skin abscess formation and bacterial burden in mice. Most importantly, it significantly decreased the expression of hla, hlgB, hlgC, spa, sbi, saeR, sak, tst, and coa genes by RT-qPCR and the protein expression of α-toxin. Altogether, the sub-MICs of tigecycline might be a promising agent to attenuate the virulence of S. aureus and its host immune response by inhibiting the SaeRS two-component system and the product of α-toxin.IMPORTANCEIn this study, the sub-MICs of tigecycline decreased the resistance of S. aureus to oxidants and human whole blood. Moreover, tigecycline weakened the cell adhesion level of S. aureus and skin abscess formation in mice by reducing bacterial burden. Remarkably, tigecycline decreased the hemolytic activity and significantly downregulated the expression of various virulence genes and α-toxin. This research highlighted that the sub-MICs of tigecycline might be a promising agent to attenuate the virulence of S. aureus by inhibiting the product of α-toxin.
Collapse
Affiliation(s)
- Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Liu J, Huang T, Xu Z, Mao Y, Soteyome T, Liu G, Qu C, Yuan L, Ma Q, Zhou F, Seneviratne G. Sub-MIC streptomycin and tetracycline enhanced Staphylococcus aureus Guangzhou-SAU749 biofilm formation, an in-depth study on transcriptomics. Biofilm 2023; 6:100156. [PMID: 37779859 PMCID: PMC10539642 DOI: 10.1016/j.bioflm.2023.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023] Open
Abstract
Staphylococcus aureus is a major human pathogen, a potential "Super-bug" and a typical biofilm forming bacteria. With usage of large amount of antibiotics, the residual antibiotics in clinical settings further complicate the colonization, pathogenesis and resistance of S. aureus. This study aimed at investigating the phenotypical and global gene expression changes on biofilm formation of a clinical S. aureus isolate treated under different types of antibiotics. Firstly, an isolate Guangzhou-SAU749 was selected from a large sale of previously identified S. aureus isolates, which exhibited weak biofilm formation in terms of biomass and viability. Secondly, 9 commonly prescribed antibiotics for S. aureus infections treatment, together with 10 concentrations ranging from 1/128 to 4 minimum inhibitory concentration (MIC) with 2-fold serial dilution, were used as different antibiotic stress conditions. Then, biofilm formation of S. aureus Guangzhou-SAU749 at different stages including 8 h, 16 h, 24 h, and 48 h, was tested by crystal violet and MTS assays. Thirdly, the whole genome of S. aureus Guangzhou-SAU749 was investigated by genome sequencing on PacBio platform. Fourthly, since enhancement of biofilm formation occurred when treated with 1/2 MIC tetracycline (TCY) and 1/4 MIC streptomycin (STR) since 5 h, the relevant biofilm samples were selected and subjected to RNA-seq and bioinformatics analysis. Last, expression of two component system (TCS) and biofilm associated genes in 4 h, 8 h, 16 h, 24 h, and 48 h sub-MIC TCY and STR treated biofilm samples were performed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Although most antibiotics lowered the biomass and cell viability of Guangzhou-SAU749 biofilm at concentrations higher than MIC, certain antibiotics including TCY and STR promoted biofilm formation at sub-MICs. Additionally, upon genome sequencing, RNA-seq and RT-qPCR on biofilm samples treated with sub-MIC of TCY and STR at key time points, genes lytR, arlR, hssR, tagA, clfB, atlA and cidA related to TCS and biofilm formation were identified to contribute to the enhanced biofilm formation, providing a theoretical basis for further controlling on S. aureus biofilm formation.
Collapse
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Gongliang Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Chunyun Qu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fang Zhou
- The First Affiliated Hospital, Sun Yan-Sen University, Guangzhou, 510080, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| |
Collapse
|
3
|
Kumar A, Saha SK, Banerjee P, Prasad K, Sengupta TK. Antibiotic-Induced Biofilm Formations in Pseudomonas aeruginosa Strains KPW.1-S1 and HRW.1-S3 are Associated with Increased Production of eDNA and Exoproteins, Increased ROS Generation, and Increased Cell Surface Hydrophobicity. Curr Microbiol 2023; 81:11. [PMID: 37978089 DOI: 10.1007/s00284-023-03495-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023]
Abstract
Pseudomonas aeruginosa is a medically important opportunistic pathogen due to its intrinsic ability to form biofilms on different surfaces as one of the defense mechanisms for survival. The fact that it can form biofilms on various medical implants makes it more harmful clinically. Although various antibiotics are used to treat Pseudomonas aeruginosa infections, studies have shown that sub-MIC levels of antibiotics could induce Pseudomonas biofilm formation. The present study thus explored the effect of the aminoglycoside antibiotic gentamicin on the biofilm dynamics of two Pseudomonas aeruginosa strains KPW.1-S1 and HRW.1-S3. Biofilm formation was found to be increased in the presence of increased concentrations of gentamicin. Confocal, scanning electron microscopy, and other biochemical tests deduced that biofilm-forming components exoproteins, eDNA, and exolipids as exopolymeric substances in Pseudomonas aeruginosa biofilms were increased in the presence of gentamicin. An increase in reactive oxygen species generation along with increased cell surface hydrophobicity was also seen for both strains when treated with gentamicin. The observed increase in the adherence of the cells accompanied by the increase in the components of exopolymeric substances may have largely contributed to the increased biofilm production by the Pseudomonas aeruginosa strains under the stress of the antibiotic treatment.
Collapse
Affiliation(s)
- Abhinash Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Saurav K Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Paromita Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
- Kalinga University, Naya Raipur, CG, 492101, India
| | - Kritika Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India
| | - Tapas K Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741 246, India.
| |
Collapse
|
4
|
Słota D, Piętak K, Florkiewicz W, Jampilek J, Tomala A, Urbaniak MM, Tomaszewska A, Rudnicka K, Sobczak-Kupiec A. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091469. [PMID: 37177013 PMCID: PMC10180150 DOI: 10.3390/nano13091469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Bioactive calcium phosphate ceramics (CaPs) are one of the building components of the inorganic part of bones. Synthetic CaPs are frequently used as materials for filling bone defects in the form of pastes or composites; however, their porous structure allows modification with active substances and, thus, subsequent use as a drug carrier for the controlled release of active substances. In this study, four different ceramic powders were compared: commercial hydroxyapatite (HA), TCP, brushite, as well as HA obtained by wet precipitation methods. The ceramic powders were subjected to physicochemical analysis, including FTIR, XRD, and determination of Ca/P molar ratio or porosity. These techniques confirmed that the materials were phase-pure, and the molar ratios of calcium and phosphorus elements were in accordance with the literature. This confirmed the validity of the selected synthesis methods. CaPs were then modified with the antibiotic clindamycin. Drug release was determined on HPLC, and antimicrobial properties were tested against Staphylococcus aureus. The specific surface area of the ceramic has been demonstrated to be a factor in drug release efficiency.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Karina Piętak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Wioletta Florkiewicz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Tomala
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Agata Tomaszewska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
- Bio-Med-Chem Doctoral School, University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 90-237 Łódź, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31 864 Krakow, Poland
| |
Collapse
|
5
|
Tuon FF, Suss PH, Telles JP, Dantas LR, Borges NH, Ribeiro VST. Antimicrobial Treatment of Staphylococcus aureus Biofilms. Antibiotics (Basel) 2023; 12:87. [PMID: 36671287 PMCID: PMC9854895 DOI: 10.3390/antibiotics12010087] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a microorganism frequently associated with implant-related infections, owing to its ability to produce biofilms. These infections are difficult to treat because antimicrobials must cross the biofilm to effectively inhibit bacterial growth. Although some antibiotics can penetrate the biofilm and reduce the bacterial load, it is important to understand that the results of routine sensitivity tests are not always valid for interpreting the activity of different drugs. In this review, a broad discussion on the genes involved in biofilm formation, quorum sensing, and antimicrobial activity in monotherapy and combination therapy is presented that should benefit researchers engaged in optimizing the treatment of infections associated with S. aureus biofilms.
Collapse
Affiliation(s)
- Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Paula Hansen Suss
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Joao Paulo Telles
- AC Camargo Cancer Center, Infectious Diseases Department, São Paulo 01525-001, São Paulo, Brazil
| | - Leticia Ramos Dantas
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Nícolas Henrique Borges
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| | - Victoria Stadler Tasca Ribeiro
- Laboratory of Emerging Infectious Diseases, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Paraná, Brazil
| |
Collapse
|
6
|
Rezk S, Alqabbasi O, Ramadan A, Turkey M. Effect of Ruta graveolens Extract on the Major Virulence Factors in Methicillin Resistant Staphylococcus aureus. Infect Drug Resist 2022; 15:7147-7156. [PMID: 36510590 PMCID: PMC9738164 DOI: 10.2147/idr.s393912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Rising Antibiotic Resistance has put the world in real threat. Methicillin resistant Staphylococcus aureus (MRSA), is a predominant cause of suppurative chronic skin and soft-tissue infections. Novel insights have focused the light on plant extracts. In this study, Ruta graveolens ethanolic active extract was tested for its potential anti-virulence activities in MRSA. Materials and Methods A total of 100 MRSA strains causing skin and soft tissue infections were isolated and antibiotic susceptibility testing was done. Ability to form biofilm was tested phenotypically. Furthermore, the antimicrobial activity of Ruta graveolens was evaluated followed by detection of its Minimum inhibitory concentration (MIC). The inhibitory activity of this extract on biofilm formation was investigated. Afterwards, we investigated its effect on the transcription of biofilm-related genes and mecA gene. Results All tested isolates were sensitive to Vancomycin and Linezolid while high resistance was noted with both Fusidic acid (83%) and Gentamicin (68%). (83%) of the isolates were biofilm producers. Ruta graveolens extract showed strong antimicrobial activity against the MRSA strains with MIC 0.78 mg/mL. At subinhibitory concentration (1/2 MIC), the extract had high biofilm inhibitory effects with mean inhibition (70%). Moreover, transcriptional analysis results showed that the mean percentages of inhibition in expression of mecA, icaA and icaD genes were 52.3%, 34.8% and 33.7%, respectively, in which all showed statistically significant difference (p ≤ 0.05). Conclusion The current study proposes the ability of Ruta graveolens extract to reduce the biofilm formation and antibiotic resistance of MRSA through downregulation of some biofilm forming genes and mecA gene which confers resistance to B-lactam antibiotics. This may decrease our reliance on antibiotics and improve our ability to effectively treat biofilm-related skin and soft-tissue infections caused by MRSA.
Collapse
Affiliation(s)
- Shahinda Rezk
- Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Omar Alqabbasi
- Biology Department, Faculty of Science, Benghazi University, Benghazi, Libya
| | - Asmaa Ramadan
- Microbiology and Biotechnology Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
- Pharmacy Department, Ministry of Health and Population, Alexandria, Egypt
| | - Mohamed Turkey
- Microbiology and Immunology Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza, 12585, Egypt
| |
Collapse
|
7
|
Hou H, Li Y, Jin Y, Chen S, Long J, Duan G, Yang H. The crafty opponent: the defense systems of Staphylococcus aureus and response measures. Folia Microbiol (Praha) 2022; 67:233-243. [PMID: 35149955 DOI: 10.1007/s12223-022-00954-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/29/2022] [Indexed: 11/29/2022]
Abstract
Staphylococcus aureus is a serious threat to public health. S. aureus infection can cause acute or long-term persistent infections that are often resistant to antibiotics and are associated with high morbidity and death. Understanding the defensive systems of S. aureus can help clinicians make the best use of antimicrobial drugs and can also help with antimicrobial stewardship. The mechanisms and clinical implications of S. aureus defense systems, as well as potential response systems, were discussed in this study. Because resistance to all currently available antibiotics is unavoidable, new medicines are always being developed. Alternative techniques, such as anti-virulence and bacteriophage therapies, are being researched and may become major tools in the fight against staphylococcal infections in the future, in addition to the development of new small compounds that affect cell viability.
Collapse
Affiliation(s)
- Hongjie Hou
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yang Li
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Liu S, Zhao Y, Hayes A, Hon K, Zhang G, Bennett C, Hu H, Finnie J, Morales S, Shearwin L, Psaltis AJ, Shearwin K, Wormald P, Vreugde S. Overcoming bacteriophage insensitivity in Staphylococcus aureus using clindamycin and azithromycinat subinhibitory concentrations. Allergy 2021; 76:3446-3458. [PMID: 33930199 DOI: 10.1111/all.14883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Staphylococcus aureus is a pathogen of major concern in both acute infections and chronic conditions such as chronic rhinosinusitis (CRS). Bacteriophage (phage) therapy has recently regained interest for its potential to treat infections caused by antibiotic resistant strains including Methicillin Resistant Staphylococcus aureus (MRSA). However, bacteria can adapt and become resistant to phages. The aim of this study is to determine the potential for antibiotics to overcome phage resistance. METHODS The susceptibility of S. aureus clinical isolates (CIs) to phages J-Sa36, Sa83 and Sa87 alone or in combination with protein synthesis inhibitor (PSI) antibiotics clindamycin, azithromycin and erythromycin was assessed using plaque spot assays, minimum inhibitory concentration (MIC) assays, double layer spot assays and resazurin assays. The safety and efficacy of subinhibitory PSI antibiotics in combination with phage was tested in a Sprague Dawley rat model of sinusitis infected with a phage resistant S. aureus CI. RESULTS All three antibiotics at subinhibitory concentrations showed synergy when combined with all 3 phages against S. aureus CIs in planktonic and biofilm form and could sensitize phage-resistant S. aureus to promote phage infection. The combination of topical subinhibitory clindamycin or azithromycin and phage was safe and could eradicate S. aureus sinonasal biofilms in vivo. CONCLUSION Subinhibitory concentrations of PSI antibiotics could sensitize phage-resistant S. aureus and MRSA strains to phages in vitro and in vivo. This data supports the potential use of phage-PSI antibiotic combination therapies, in particular for difficult-to-treat infections with phage-resistant S. aureus and MRSA strains.
Collapse
Affiliation(s)
- Sha Liu
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Yin Zhao
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Department of Otolaryngology, Head and Neck Surgery The Second Hospital of Jilin University Changchun China
| | - Andrew Hayes
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Karen Hon
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Guimin Zhang
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Department of Otolaryngology‐Head and Neck Surgery Tianjin First Center Hospital Tianjin China
| | - Catherine Bennett
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Hua Hu
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
- Department of Otolaryngology, Head and Neck Surgery Shanghai General Hospital Shanghai Jiaotong University Shanghai China
| | - John Finnie
- Discipline of Anatomy and Pathology Adelaide Medical School University of Adelaide Adelaide SA Australia
| | | | - Linda Shearwin
- Department of Molecular and Biomedical Science Adelaide University Adelaide SA Australia
| | - Alkis J. Psaltis
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Keith Shearwin
- Department of Molecular and Biomedical Science Adelaide University Adelaide SA Australia
| | - Peter‐John Wormald
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery Basil Hetzel Institute for Translational Health Research Central Adelaide Local Health Network Woodville South SA Australia
- Adelaide Medical School The University of Adelaide Adelaide SA Australia
| |
Collapse
|
9
|
Ogi K, Liu S, Ramezanpour M, Cooksley C, Javadiyan S, Fujieda S, Wormald PJ, Vreugde S, Psaltis AJ. Trimellitic anhydride facilitates transepithelial permeability disrupting tight junctions in sinonasal epithelial cells. Toxicol Lett 2021; 353:27-33. [PMID: 34627954 DOI: 10.1016/j.toxlet.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
Trimellitic anhydride (TMA) is a chemical agent classified as a low molecular weight (LMW) agent causing occupational rhinitis (OR) or asthma. Although TMA is recognized as a respiratory sensitizer, the direct and non-immunologic effects of TMA remain unclear. Air- liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects were treated with TMA, followed by measurement of the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextran and immunofluorescence of tight junction proteins claudin-1 and zonula occludens-1 (ZO-1). The cytotoxicity of TMA was evaluated by lactate dehydrogenase (LDH) assay. TMA at concentrations of 2 and 4 mg/mL significantly reduced the TEER within 10 min (p = 0.0177 on 2 mg/mL; p < 0.0001 on 4 mg/mL). The paracellular permeability of FITC-dextran was significantly increased upon challenge with 4 mg/mL TMA for 3 h (p = 0.0088) and 6 h (p = 0.0004). TMA treatment induced a reduction in the fluorescence intensity of claudin-1 and ZO-1 in a dose-dependent manner. LDH assay revealed 4 mg/mL TMA induced cytotoxicity only after 6 h incubation, while 1 or 2 mg/mL TMA caused no cytotoxicity. Our results suggest that TMA has a potential to penetrate the epithelial barrier by disrupting claudin-1 and ZO-1, indicating an important role for sensitization and OR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia; Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sha Liu
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Clare Cooksley
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Shari Javadiyan
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.
| |
Collapse
|
10
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 5: Lincosamides: lincomycin. EFSA J 2021; 19:e06856. [PMID: 34729085 PMCID: PMC8546522 DOI: 10.2903/j.efsa.2021.6856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The specific concentrations of lincomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels of lincomycin in feed that showed to have an effect on growth promotion/increased yield were reported. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for lincomycin.
Collapse
|
11
|
Asadpoor M, Ithakisiou GN, van Putten JPM, Pieters RJ, Folkerts G, Braber S. Antimicrobial Activities of Alginate and Chitosan Oligosaccharides Against Staphylococcus aureus and Group B Streptococcus. Front Microbiol 2021; 12:700605. [PMID: 34589067 PMCID: PMC8473942 DOI: 10.3389/fmicb.2021.700605] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022] Open
Abstract
The bacterial pathogens Streptococcus agalactiae (GBS) and Staphylococcus aureus (S. aureus) cause serious infections in humans and animals. The emergence of antibiotic-resistant isolates and bacterial biofilm formation entails the urge of novel treatment strategies. Recently, there is a profound scientific interest in the capabilities of non-digestible oligosaccharides as antimicrobial and anti-biofilm agents as well as adjuvants in antibiotic combination therapies. In this study, we investigated the potential of alginate oligosaccharides (AOS) and chitosan oligosaccharides (COS) as alternative for, or in combination with antibiotic treatment. AOS (2-16%) significantly decreased GBS V growth by determining the minimum inhibitory concentration. Both AOS (8 and 16%) and COS (2-16%) were able to prevent biofilm formation by S. aureus wood 46. A checkerboard biofilm formation assay demonstrated a synergistic effect of COS and clindamycin on the S. aureus biofilm formation, while AOS (2 and 4%) were found to sensitize GBS V to trimethoprim. In conclusion, AOS and COS affect the growth of GBS V and S. aureus wood 46 and can function as anti-biofilm agents. The promising effects of AOS and COS in combination with different antibiotics may offer new opportunities to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Mostafa Asadpoor
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Georgia-Nefeli Ithakisiou
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Jos P. M. van Putten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Roland J. Pieters
- Division of Medicinal Chemistry and Chemical Biology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
12
|
Ogi K, Ramezanpour M, Liu S, Ferdoush Tuli J, Bennett C, Suzuki M, Fujieda S, Psaltis AJ, Wormald PJ, Vreugde S. Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:692049. [PMID: 35387029 PMCID: PMC8974687 DOI: 10.3389/falgy.2021.692049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background:Dermatophagoides pteronyssinus 1/2 (Der p 1/Der p 2) are regarded as important allergens of house dust mite (HDM). However, the effect of both products on the epithelial barrier and immune response of patients with and without HDM allergic rhinitis (AR) remains unclear. Methods: Air–liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects (non-AR) (n = 9) and HDM-AR patients (n = 9) were treated with Der P 1 and Der P 2, followed by testing the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextrans and immunofluorescence of claudin-1 and ZO-1. Interleukin-6 (IL-6) production was evaluated by ELISA. Results: Der p 1 reduced TEER significantly in a transient and dose-dependent manner in HNEC-ALI cultures from HDM-AR and non-AR patients, whilst the paracellular permeability was not affected. TEER was significantly reduced by Der p 1 at the 10-min time point in HDM-AR patients compared to non-AR patients (p = 0.0259). Compared to no-treatment control, in HNECs derived from HDM-AR patients, Der p 1 significantly cleaved claudin-1 after 30 min exposure (72.7 ± 9.5 % in non-AR group, 39.9 ± 7.1 % in HDM-AR group, p = 0.0286) and induced IL-6 secretion (p = 0.0271). Conclusions: Our results suggest that patients with HDM-AR are more sensitive to Der p 1 than non-AR patients with increased effects of Der p1 on the mucosal barrier and induction of inflammation, indicating an important role for Der p1 in sensitization and HDM-AR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sha Liu
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Jannatul Ferdoush Tuli
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Catherine Bennett
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Masanobu Suzuki
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Alkis James Psaltis
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- *Correspondence: Sarah Vreugde
| |
Collapse
|
13
|
Idrees M, Sawant S, Karodia N, Rahman A. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7602. [PMID: 34300053 PMCID: PMC8304105 DOI: 10.3390/ijerph18147602] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a nosocomial bacterium causing different infectious diseases, ranging from skin and soft tissue infections to more serious and life-threatening infections such as septicaemia. S. aureus forms a complex structure of extracellular polymeric biofilm that provides a fully secured and functional environment for the formation of microcolonies, their sustenance and recolonization of sessile cells after its dispersal. Staphylococcus aureus biofilm protects the cells against hostile conditions, i.e., changes in temperature, limitations or deprivation of nutrients and dehydration, and, more importantly, protects the cells against antibacterial drugs. Drugs are increasingly becoming partially or fully inactive against S. aureus as they are either less penetrable or totally impenetrable due to the presence of biofilms surrounding the bacterial cells. Other factors, such as evasion of innate host immune system, genome plasticity and adaptability through gene evolution and exchange of genetic material, also contribute to the ineffectiveness of antibacterial drugs. This increasing tolerance to antibiotics has contributed to the emergence and rise of antimicrobial resistance (AMR), a serious problem that has resulted in increased morbidity and mortality of human and animal populations globally, in addition to causing huge financial losses to the global economy. The purpose of this review is to highlight different aspects of S. aureus biofilm formation and its overall architecture, individual biofilm constituents, clinical implications and role in pathogenesis and drug resistance. The review also discusses different techniques used in the qualitative and quantitative investigation of S. aureus biofilm and various strategies that can be employed to inhibit and eradicate S. aureus biofilm.
Collapse
Affiliation(s)
| | | | | | - Ayesha Rahman
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK; (M.I.); (S.S.); (N.K.)
| |
Collapse
|
14
|
Virulence alterations in staphylococcus aureus upon treatment with the sub-inhibitory concentrations of antibiotics. J Adv Res 2021; 31:165-175. [PMID: 34194840 PMCID: PMC8240104 DOI: 10.1016/j.jare.2021.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background The treatment of patients with Staphylococcus aureus infections mainly relies on antistaphylococcal regimens that are established with effective antibiotics. In antibiotic therapy or while living in nature, pathogens often face the sub-inhibitory concentrations (sub-MICs) of antibiotics due to drug pharmacokinetics, diffusion barriers, waste emission, resistant organism formation, and farming application. Different categories of antibiotics at sub-MICs have diverse effects on the physiological and chemical properties of microorganisms. These effects can result in virulence alterations. However, the mechanisms underlying the actions of antibiotics at sub-MICs on S. aureus virulence are obscure. Aim of review In this review, we focus on the effects of sub-MICs of antibiotics on S. aureus virulence from the aspects of cell morphological change, virulence factor expression, bacterial adherence and invasion, staphylococcal biofilm formation, and small-colony variant (SCV) production. The possible mechanisms of antibiotic-induced S. aureus virulence alterations are also addressed. Key scientific concepts of review Five main aspects of bacterial virulence can be changed in S. aureus exposure to the sub-MIC levels of antibiotics, resulting in deformed bacterial cells to stimulate abnormal host immune responses, abnormally expressed virulence factors to alter disease development, changed bacterial adhesion and invasion abilities to affect colonization and diffusion, altered biofilm formation to potentate material-related infections, and increased SCV formation to achieve persistent infection and recurrence. These advanced findings expand our knowledge to rethink the molecular signaling roles of antibiotics beyond their actions as antimicrobial agents.
Collapse
|
15
|
Lim DJ, Thompson HM, Walz CR, Ayinala S, Skinner D, Zhang S, Grayson JW, Cho DY, Woodworth BA. Azithromycin and ciprofloxacin inhibit interleukin-8 secretion without disrupting human sinonasal epithelial integrity in vitro. Int Forum Allergy Rhinol 2020; 11:136-143. [PMID: 32725797 DOI: 10.1002/alr.22656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND We recently developed a ciprofloxacin and azithromycin sinus stent (CASS) to target recalcitrant infections in chronic rhinosinusitis (CRS). The objective of this study was to evaluate the anti-inflammatory activity of azithromycin released from the CASS and assess the impact on the integrity and function of primary human sinonasal epithelial cells (HSNECs). METHODS Pseudomonas aeruginosa lipopolysaccharide (LPS)-stimulated HSNECs were treated with azithromycin and/or ciprofloxacin at concentrations attainable from CASS release. Interleukin-8 (IL-8) secretion was quantified by enzyme-linked immunosorbent assay (ELISA). Epithelial integrity (transepithelial resistance [TEER], paracellular permeability [fluorescein isothiocyanate-labeled dextran], lactate dehydrogenase [LDH] assays) and function (ciliary beat frequency [CBF]) were also evaluated. RESULTS Azithromycin significantly reduced secreted IL-8 from P. aeruginosa LPS-stimulated HSNECs at all concentrations tested (mean ± standard deviation; control = 5.77 ± 0.39 ng/mL, azithromycin [6 μg/mL] = 4.58 ± 0.40 ng/mL, azithromycin [60 µg/mL] = 4.31 ± 0.06, azithromycin [180 µg/mL] = 4.27 ± 0.26 ng/mL, p < 0.05). Co-incubation with azithromycin (6 µg/mL) and ciprofloxacin (2.4 µg/mL) in LPS-stimulated HSNECs also displayed a significant reduction in secreted IL-8 when compared to P. aeruginosa LPS alone (co-treatment = 4.61 ± 0.29 ng/mL, P. aeruginosa LPS = 7.35 ± 0.89 ng/mL, p < 0.01). The drugs did not negatively impact TEER, paracellular permeability, LDH release, or CBF, indicating retention of cell integrity and function. CONCLUSION Azithromycin decreased P. aeruginosa LPS IL-8 production in HSNECs at drug concentrations attainable with sustained release of azithromycin from the CASS. In addition to antibacterial activity, anti-inflammatory properties of the CASS should provide further benefit for patients with recalcitrant CRS.
Collapse
Affiliation(s)
- Dong-Jin Lim
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | | | | | - Samrath Ayinala
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Daniel Skinner
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Shaoyan Zhang
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Jessica W Grayson
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL
| | - Do-Yeon Cho
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, AL
| | - Bradford A Woodworth
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
16
|
Chronic Rhinosinusitis-An Update on Epidemiology, Pathogenesis and Management. J Clin Med 2020; 9:jcm9072285. [PMID: 32708447 PMCID: PMC7408732 DOI: 10.3390/jcm9072285] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023] Open
|