1
|
Daniels DE, Ferrer-Vicens I, Hawksworth J, Andrienko TN, Finnie EM, Bretherton NS, Ferguson DCJ, Oliveira ASF, Szeto JYA, Wilson MC, Brewin JN, Frayne J. Human cellular model systems of β-thalassemia enable in-depth analysis of disease phenotype. Nat Commun 2023; 14:6260. [PMID: 37803026 PMCID: PMC10558456 DOI: 10.1038/s41467-023-41961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
β-thalassemia is a prevalent genetic disorder causing severe anemia due to defective erythropoiesis, with few treatment options. Studying the underlying molecular defects is impeded by paucity of suitable patient material. In this study we create human disease cellular model systems for β-thalassemia by gene editing the erythroid line BEL-A, which accurately recapitulate the phenotype of patient erythroid cells. We also develop a high throughput compatible fluorometric-based assay for evaluating severity of disease phenotype and utilize the assay to demonstrate that the lines respond appropriately to verified reagents. We next use the lines to perform extensive analysis of the altered molecular mechanisms in β-thalassemia erythroid cells, revealing upregulation of a wide range of biological pathways and processes along with potential novel targets for therapeutic investigation. Overall, the lines provide a sustainable supply of disease cells as research tools for identifying therapeutic targets and as screening platforms for new drugs and reagents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jenn-Yeu A Szeto
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | - John N Brewin
- Haematology Department, King's college Hospital NHS Foundation, London, SE5 9RS, UK
- Red Cell Biology Group, Kings College London, London, SE5 9NU, UK
| | - Jan Frayne
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
2
|
Li N, An P, Wang J, Zhang T, Qing X, Wu B, Sun L, Ding X, Niu L, Xie Z, Zhang M, Guo X, Chen X, Cai T, Luo J, Wang F, Yang F. Plasma proteome profiling combined with clinical and genetic features reveals the pathophysiological characteristics of β-thalassemia. iScience 2022; 25:104091. [PMID: 35378860 PMCID: PMC8976145 DOI: 10.1016/j.isci.2022.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022] Open
Abstract
The phenotype of β-thalassemia underlies multigene interactions, making clinical stratification complicated. An increasing number of genetic modifiers affecting the disease severity have been identified, but are still unable to meet the demand of precision diagnosis. Here, we systematically conducted a comparative plasma proteomic profiling on patients with β-thalassemia and healthy controls. Among 246 dysregulated proteins, 13 core protein signatures with excellent biomarker potential are proposed. The combination of proteome and patients' clinical data revealed patients with codons 41/42 -TTCT mutations have an elevated risk of higher iron burden, dysplasia, and osteoporosis than patients with other genotypes. Notably, 85 proteins correlating to fetal hemoglobin (Hb F) were identified, among which the abundance of 27 proteins may affect the transfusion burden in patients with β-thalassemia. The current study thus provides protein signatures as potential diagnostic biomarkers or therapeutic clues for β-thalassemia. 246 dysregulated proteins are detected in plasma of patients with β-thalassemia 13 potential biomarkers and 27 proteins related to disease progression are found Variations in plasma proteome reveal the disease pathophysiological characteristics Codons 41/42 -TTCT carriers have higher ferritin levels compared to non-carriers
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Qing
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengmeng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058 , China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Cannon M, Phillips H, Smith S, Williams K, Brinton L, Gregory C, Landes K, Desai P, Byrd J, Lapalombella R. Large-Scale Drug Screen Identifies FDA-Approved Drugs for Repurposing in Sickle-Cell Disease. J Clin Med 2020; 9:E2276. [PMID: 32708954 PMCID: PMC7408993 DOI: 10.3390/jcm9072276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022] Open
Abstract
Sickle-cell disease (SCD) is a debilitating hematological disorder with very few approved treatment options. Therapeutic reactivation of fetal hemoglobin (HbF) is one of the most pursued methods for ameliorating the systemic manifestations of SCD. Despite this, very few pharmacological agents have advanced to clinical trials or marketing for use. In this study, we report the development of an HbF in situ intracellular immunoblot assay coupled to a high-throughput drug screen to identify Food and Drug Administration (FDA) approved drugs that can be repurposed clinically for treatment of SCD. Using this assay we evaluated the National Institute of Health (NIH) Clinical Collection (NCC), a publicly available library of 725 small molecules, and found nine candidates that can significantly re-express HbF in erythroid cell lines as well as primary erythroblasts derived from SCD patients. Furthermore, we show the strong effects on HbF expression of these candidates to occur with minimal cytotoxicity in 7 of the 9 drugs. Given these data and their proven history of use for other indications, we hypothesize that several of these candidate drugs warrant further investigation for use in SCD.
Collapse
Affiliation(s)
- Matthew Cannon
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - Hannah Phillips
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - Sidney Smith
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - Katie Williams
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - Lindsey Brinton
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - Charles Gregory
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - Kristina Landes
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - Payal Desai
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| | - John Byrd
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Rosa Lapalombella
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (M.C.); (H.P.); (S.S.); (K.W.); (L.B.); (C.G.); (K.L.); (P.D.); (J.B.)
| |
Collapse
|