1
|
Xu Y, Yang Z, Wang T, Hu L, Jiao S, Zhou J, Dai T, Feng Z, Li S, Meng Q. From molecular subgroups to molecular targeted therapy in rheumatoid arthritis: A bioinformatics approach. Heliyon 2024; 10:e35774. [PMID: 39220908 PMCID: PMC11365346 DOI: 10.1016/j.heliyon.2024.e35774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
1Background Rheumatoid Arthritis (RA) is a heterogeneous autoimmune disease with multiple unidentified pathogenic factors. The inconsistency between molecular subgroups poses challenges for early diagnosis and personalized treatment strategies. In this study, we aimed to accurately distinguish RA patients at the transcriptome level using bioinformatics methods. 2Methods We collected a total of 362 transcriptome datasets from RA patients in three independent samples from the GEO database. Consensus clustering was performed to identify molecular subgroups, and clinical features were assessed. Differential analysis was employed to annotate the biological functions of specifically upregulated genes between subgroups. 3Results Based on consensus clustering of RA samples, we identified three robust molecular subgroups, with Subgroup III representing the high-risk subgroup and Subgroup II exhibiting a milder phenotype, possibly associated with relatively higher levels of autophagic ability. Subgroup I showed biological functions mainly related to viral infections, cellular metabolism, protein synthesis, and inflammatory responses. Subgroup II involved autophagy of mitochondria and organelles, protein localization, and organelle disassembly pathways, suggesting heterogeneity in the autophagy process of mitochondria that may play a protective role in inflammatory diseases. Subgroup III represented a high-risk subgroup with pathological processes including abnormal amyloid precursor protein activation, promotion of inflammatory response, and cell proliferation. 4Conclusion The classification of the RA dataset revealed pathological heterogeneity among different subgroups, providing new insights and a basis for understanding the molecular mechanisms of RA, identifying potential therapeutic targets, and developing personalized treatment approaches.
Collapse
Affiliation(s)
- Yangyang Xu
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhenyu Yang
- Jinan University, Guangzhou, Guangdong Province, China
- Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, Xuzhou City, Jiangsu Province, China
| | - Tengyan Wang
- Guizhou Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guiyang City, Guizhou Province, China
| | - Liqiong Hu
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Songsong Jiao
- Jinan University, Guangzhou, Guangdong Province, China
| | - Jiangfei Zhou
- Jinan University, Guangzhou, Guangdong Province, China
| | - Tianming Dai
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Zhencheng Feng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Guizhou Medical University, Guiyang City, Guizhou Province, China
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| | - Qinqqi Meng
- Guangzhou Red Cross Hospital Affiliated of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Wusiman W, Zhang Z, Ding Q, Liu M. The pathophyiological role of aminoacyl-tRNA synthetases in digestive system diseases. Front Physiol 2022; 13:935576. [PMID: 36017335 PMCID: PMC9396140 DOI: 10.3389/fphys.2022.935576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs and are indispensable enzymes for protein biosynthesis in all the cells. Previously, ARSs were considered simply as housekeeping enzymes, however, they are now known to be involved in a variety of physiological and pathological processes, such as tumorigenesis, angiogenesis, and immune response. In this review, we summarize the role of ARSs in the digestive system, including the esophagus, stomach, small intestine, colon, as well as the auxiliary organs such as the pancreas, liver, and the gallbladder. Furthermore, we specifically focus on the diagnostic and prognostic value of ARSs in cancers, aiming to provide new insights into the pathophysiological implications of ARSs in tumorigenesis.
Collapse
Affiliation(s)
- Wugelanmu Wusiman
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Ding
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Mei Liu,
| |
Collapse
|
3
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Exp Mol Med 2022; 54:553-566. [PMID: 35501376 PMCID: PMC9166799 DOI: 10.1038/s12276-022-00765-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
Although key tumorigenic and tumor-suppressive factors have been unveiled over the last several decades, cancer remains the most life-threatening disease. Multiomic analyses of patient samples and an in-depth understanding of tumorigenic processes have rapidly revealed unexpected pathologic associations of new cellular factors previously overlooked in cancer biology. In this regard, the newly discovered activities of human aminoacyl-tRNA synthases (ARSs) deserve attention not only for their pathological significance in tumorigenesis but also regarding diagnostic and therapeutic implications. ARSs are not only essential enzymes covalently linking substrate amino acids to cognate tRNAs for protein synthesis but also function as regulators of cellular processes by sensing different cellular conditions. With their catalytic role in protein synthesis and their regulatory role in homeostasis, functional alterations or dysregulation of ARSs might be pathologically associated with tumorigenesis. This review focuses on the potential implications of ARS genes and proteins in different aspects of cancer based on various bioinformatic analyses and experimental data. We also review their diverse activities involving extracellular secretion, protein–protein interactions, and amino acid sensing, which are related to cancers. The newly discovered cancer-related activities of ARSs are expected to provide new opportunities for detecting, preventing and curing cancers. Enzymes called aminoacyl-tRNA synthetases (ARSs), which play a central role in all life, are becoming implicated in several aspects of cancer in ways that may lead to new approaches for prevention, detection and treatment. ARS enzymes catalyse the ligation of amino acids to transfer RNA molecules to allow amino acids to combine in the correct sequences to form proteins. Jung Min Han, Sunghoon Kim and colleagues at Yonsei University, Incheon, South Korea, review researches implicating ARS enzymes and the genes that code for them in a variety of cancers. The behavior of ARS enzymes and their genes are found to be altered in several types of cancer cells in ways that may either initiate or support the onset and development of the disease, through which they could be suggested as targets for novel anti-cancer drugs.
Collapse
|
5
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
6
|
Zou Y, Yang Y, Fu X, He X, Liu M, Zong T, Li X, Htet Aung L, Wang Z, Yu T. The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:372-387. [PMID: 34484863 PMCID: PMC8399643 DOI: 10.1016/j.omtn.2021.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are widely found in organisms, which can activate amino acids and make them bind to tRNA through ester bond to form the corresponding aminoyl-tRNA. The classic function of ARS is to provide raw materials for protein biosynthesis. Recently, emerging evidence demonstrates that ARSs play critical roles in controlling inflammation, immune responses, and tumorigenesis as well as other important physiological and pathological processes. With the recent development of genome and exon sequencing technology, as well as the discovery of new clinical cases, ARSs have been reported to be closely associated with a variety of cardiovascular diseases (CVDs), particularly angiogenesis and cardiomyopathy. Intriguingly, aminoacylation was newly identified and reported to modify substrate proteins, thereby regulating protein activity and functions. Sensing the availability of intracellular amino acids is closely related to the regulation of a variety of cell physiology. In this review, we summarize the research progress on the mechanism of CVDs caused by abnormal ARS function and introduce the clinical phenotypes and characteristics of CVDs related to ARS dysfunction. We also highlight the potential roles of aminoacylation in CVDs. Finally, we discuss some of the limitations and challenges of present research. The current findings suggest the significant roles of ARSs involved in the progress of CVDs, which present the potential clinical values as novel diagnostic and therapeutic targets in CVD treatment.
Collapse
Affiliation(s)
- Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Lynn Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| |
Collapse
|
7
|
Liu Y, Jiang K, Zhi T, Xu X. miR-720 is a key regulator of glioma migration and invasion by controlling TARSL2 expression. Hum Cell 2021; 34:1504-1516. [PMID: 34024034 DOI: 10.1007/s13577-021-00551-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/12/2021] [Indexed: 12/28/2022]
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain tumor and is characterized by diffuse infiltrative growth. However, the mechanisms that control this phenotype remain largely unknown. Emerging evidence has demonstrated that the abnormal expression of microRNAs and their target genes are involved in the migration and invasion of glioma cells. In this study, we demonstrated that microRNA-720 (miR-720) was significantly upregulated in glioma tissues and cells. Functional experiments showed that overexpression of miR-720 promotes glioma migration and invasion, while downregulation of miR-720 inhibits glioma migration and invasion. Meanwhile, we found that threonyl-tRNA synthetase like-2 (TARSL2) was a direct and functional target of miR-720 in glioma. Reintroduction of TARSL2 into glioma cells repressed the invasion promoting function of miR-720, whereas downregulation of TARSL2 reversed the anti-invasion function of anti-miR-720. Furthermore, quantitative real-time polymerase chain reaction results showed that miR-720 was inversely correlated with TARSL2 expression in 40 GBM tissues. Finally, in vivo experiments showed that miR-720 promotes glioma growth and upregulates invasion-related genes in nude mice. Overall, our findings suggest increasing miR-720 enhances glioma migration and invasion through downregulation of TARSL2, which may provide novel insight into the treatment of glioma.
Collapse
Affiliation(s)
- Yinlong Liu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215008, Jiangsu Province, China
| | - Kuan Jiang
- Department of Neurosurgery, Yixing People's Hospital, Yixing, 214200, Jiangsu Province, China
| | - Tongle Zhi
- Department of Neurosurgery, The First People's Hospital of Yancheng, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224006, Jiangsu Province, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
8
|
Zhou Z, Sun B, Nie A, Yu D, Bian M. Roles of Aminoacyl-tRNA Synthetases in Cancer. Front Cell Dev Biol 2020; 8:599765. [PMID: 33330488 PMCID: PMC7729087 DOI: 10.3389/fcell.2020.599765] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs (tRNAs), thus playing an important role in protein synthesis. In eukaryotic cells, these enzymes exist in free form or in the form of multi-tRNA synthetase complex (MSC). The latter contains nine cytoplasmic ARSs and three ARS-interacting multifunctional proteins (AIMPs). Normally, ARSs and AIMPs are regarded as housekeeping molecules without additional functions. However, a growing number of studies indicate that ARSs are involved in a variety of physiological and pathological processes, especially tumorigenesis. Here, we introduce the roles of ARSs and AIMPs in certain cancers, such as colon cancer, lung cancer, breast cancer, gastric cancer and pancreatic cancer. Furthermore, we particularly focus on their potential clinical applications in cancer, aiming at providing new insights into the pathogenesis and treatment of cancer.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|