1
|
Rouway M, Tarfaoui M, Chakhchaoui N, Omari LEH, Fraija F, Cherkaoui O. Additive Manufacturing and Composite Materials for Marine Energy: Case of Tidal Turbine. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1309-1319. [PMID: 38116217 PMCID: PMC10726194 DOI: 10.1089/3dp.2021.0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The global trend in additive manufacturing is the technology of three-dimensional (3D) printing with a high potential to avoid some of the weaknesses of conventional fabrication techniques. This new technology has been used to manufacture small tidal and wind turbines. In isolated areas, small turbines can be manufactured and assembled on-site for green energy production. The purpose of this document is to evaluate the thermomechanical behavior of a printed tidal turbine using Digimat-AM (Additive Manufacturing) with fused filament fabrication method. The finite element computes the mechanical deflection, temperature, residual stresses, and warpage fields of the printed part. The composites used during printing are thermoplastic polymers (acrylonitrile butadiene styrene, polyamide 6 [PA6], polyamide 12 [PA12], and polyetherimide [PEI]) reinforced with carbon and glass fillers in the form of fibers and beads (CF/GF and CB/GB). Through the simulation, one could show that the blade printed with PEI-CB/CF has excellent mechanical performance of low mechanical deflection and warpage, compared to PA6-CB/CF. In addition, the fiber-shaped fillers are better than the bead-shaped ones for the 3D printing process. In general, this study has shown the potential and feasibility of 3D printing as an excellent opportunity in the fabrication of small blades in the future, but more studies are required to understand this potential.
Collapse
Affiliation(s)
- Marwane Rouway
- LPMAT Laboratory, FSAC, Hassan II University, Casablanca, Morocco
- REMTEX Laboratory, ESITH, Casablanca, Morocco
| | | | - Nabil Chakhchaoui
- REMTEX Laboratory, ESITH, Casablanca, Morocco
- LN2 Laboratory, CNRS, Sherbrooke University, Sherbrooke, Canada
| | | | - Fouzia Fraija
- LPMAT Laboratory, FSAC, Hassan II University, Casablanca, Morocco
| | | |
Collapse
|
2
|
Patel V, Joshi U, Joshi A, Oza AD, Prakash C, Linul E, Campilho RDSG, Kumar S, Saxena KK. Strength Evaluation of Functionalized MWCNT-Reinforced Polymer Nanocomposites Synthesized Using a 3D Mixing Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7263. [PMID: 36295328 PMCID: PMC9610679 DOI: 10.3390/ma15207263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The incorporation of carboxyl functionalized multi-walled carbon nanotube (MWCNT- COOH) into a polymethyl methacrylate (PMMA) has been investigated. The resultant tensile and flexural mechanical properties have been determined. In this paper, a novel synthesis process for a MWCNT-reinforced polymer nanocomposite is proposed. The proposed method significantly eliminates the most challenging issues of the nano-dispersed phase, including agglomeration and non-homogeneous mixing within a given matrix material, and also resolves the issues occurring in conventional mixing processes. The results of scanning electron microscopy support these claims. This 3D-mixing process is followed by an extrusion process, using a twin-screw extruder for pristine MWCNT, and a compression molding process for COOH-MWCNT, to prepare test specimens for experimentally determining the mechanical properties. The test specimens are fabricated using 0.1, 0.5, and 1.0 wt.% MWCNT, with a remaining PMMA phase. The testing is conducted according to ASTM D3039 and ASTM D7264 standards. Significant improvements of 25.41%, 35.85%, and 31.75% in tensile properties and 18.27%, 48%, and 33.33% in flexural properties for 0.1, 0.5, and 1.0 wt.% COOH-MWCNT in PMMA, respectively, compared to non-functionalized MWCNTs, were demonstrated. The highest strength was recorded for the nanocomposite with 0.5 wt.% f-MWCNT content, indicating the best doping effect at a lower concentration of f-MWCNT. The proposed CNT-PMMA nanocomposite may be found suitable for use as a scaffold material in the domain of bone tissue engineering research. This type of research possesses a high strength requirement, which may be fulfilled using MWCNT. Furthermore, this analysis also shows a significant amount of enhancement in flexural strength, which is clinically required for fabricating denture bases.
Collapse
Affiliation(s)
- Vijay Patel
- Department of Mechanical Engineering, Parul University, Vadodara 391760, Gujarat, India
| | - Unnati Joshi
- Department of Mechanical Engineering, Parul University, Vadodara 391760, Gujarat, India
| | - Anand Joshi
- Department of Mechatronics Engineering, Parul University, Vadodara 391760, Gujarat, India
| | - Ankit D. Oza
- Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar 382426, Gujarat, India
| | - Chander Prakash
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Emanoil Linul
- Department of Mechanics and Strength of Materials, Politehnica University Timisoara, 1 Mihai Viteazu Avenue, 300222 Timisoara, Romania
| | | | - Sandeep Kumar
- Division of Research Innovation, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Kuldeep Kumar Saxena
- Department of Mechanical Engineering, GLA University, Mathura 281406, Uttar Pradesh, India
| |
Collapse
|
3
|
Palmieri E, Cicero C, Orazi N, Mercuri F, Zammit U, Mazzuca C, Orlanducci S. Nanodiamond composites: A new material for the preservation of parchment. J Appl Polym Sci 2022. [DOI: 10.1002/app.52742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena Palmieri
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Rome Italy
| | - Cristina Cicero
- Department of Literary, Philosophical and Art History Studies University of Rome “Tor Vergata” Rome Italy
| | - Noemi Orazi
- Industrial Engineering Department University of Rome “Tor Vergata” Rome Italy
| | - Fulvio Mercuri
- Industrial Engineering Department University of Rome “Tor Vergata” Rome Italy
| | - Ugo Zammit
- Industrial Engineering Department University of Rome “Tor Vergata” Rome Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Rome Italy
| | - Silvia Orlanducci
- Department of Chemical Science and Technologies University of Rome “Tor Vergata” Rome Italy
| |
Collapse
|
4
|
Numerical Investigation of the Structural Behavior of an Innovative Offshore Floating Darrieus-Type Wind Turbines with Three-Stage Rotors. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6060167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertical axis wind turbine (VAWT) design has several advantages for offshore wind turbine installation. The VAWT provides omnidirectional wind power, and its mechanical rotating mechanisms can be installed near sea level. In this paper, the selection of a suitable composite material for floating H-Darrieus-type wind turbines with three-stage rotors and its properties are discussed. The centrifugal forces acting on the composite blades are compared to the values of these forces evaluated on the aluminum blades. Abaqus software is used for numerical simulations. The selection of appropriate laminations used to model the composite materials is discussed. The optimum combination of selected layers is determined to reduce the values of maximum bending stresses and displacements, resulting in a high strength-to-weight ratio. In the post-processor, a path is taken at the location of the application of the maximum load on the blade and the values of the displacements and stresses along this path are determined. These maximum values are compared to the unidirectional strength of the selected composite material to ensure a safe design.
Collapse
|
5
|
An Alternative Electro-Mechanical Finite Formulation for Functionally Graded Graphene-Reinforced Composite Beams with Macro-Fiber Composite Actuator. MATERIALS 2021; 14:ma14247802. [PMID: 34947394 PMCID: PMC8705404 DOI: 10.3390/ma14247802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022]
Abstract
With its extraordinary physical properties, graphene is regarded as one of the most attractive reinforcements to enhance the mechanical characteristics of composite materials. However, the existing models in the literature might meet severe challenges in the interlaminar-stress prediction of thick, functionally graded, graphene-reinforced-composite (FG-GRC)-laminated beams that have been integrated with piezoelectric macro-fiber-composite (MFC) actuators under electro-mechanical loadings. If the transverse shear deformations cannot be accurately described, then the mechanical performance of the FG-GRC-laminated beams with MFC actuators will be significantly impacted by the electro-mechanical coupling effect and the sudden change of the material characteristics at the interfaces. Therefore, a new electro-mechanical coupled-beam model with only four independent displacement variables is proposed in this paper. Employing the Hu–Washizu (HW) variational principle, the precision of the transverse shear stresses in regard to the electro-mechanical coupling effect can be improved. Moreover, the second-order derivatives of the in-plane displacement parameters have been removed from the transverse-shear-stress components, which can greatly simplify the finite-element implementation. Thus, based on the proposed electro-mechanical coupled model, a simple C0-type finite-element formulation is developed for the interlaminar shear-stress analysis of thick FG-GRC-laminated beams with MFC actuators. The 3D elasticity solutions and the results obtained from other models are used to assess the performance of the proposed finite-element formulation. Additionally, comprehensive parametric studies are performed on the influences of the graphene volume fraction, distribution pattern, electro-mechanical loading, boundary conditions, lamination scheme and geometrical parameters of the beams on the deformations and stresses of the FG-GRC-laminated beams with MFC actuators.
Collapse
|