1
|
Li X, Wang Y, Geng X, Sun J, Liu Y, Dong A, Zhang R. Melanin-intercalated layered double hydroxide LDH/MNP as a stable photothermal agent. BMC Chem 2024; 18:198. [PMID: 39396055 PMCID: PMC11471033 DOI: 10.1186/s13065-024-01312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Melanin nanoparticles (MNPs) are a type of electronegative compound that can be used as photothermal agent for cancer treatment. Nevertheless, the agglomeration of MNP, which is one of the limitations in practice, contributes to the instability of MNP. Pristine layered double hydroxide (LDH), as a kind of positive inorganic material when there exist no other cargo between its layers, can accommodate electronegative molecules between its layers to endow them with stable properties. Hence, in this study, electronegative MNP was intercalated into LDH lamellas via ion-exchange method to obtain the stable original photothermal agent LDH/MNP, solving the tough problem of MNP's agglomeration. The surface morphology, X-ray diffraction and fourier transform infrared spectra affirmed the successful intercalation of MNP between LDH lamellas. The Z-average particle sizes of LDH/MNP on day 0, 7 and 14 were measured as 221.8 nm, 227.6 nm and 230.5 nm without obvious fluctuation, while the particle sizes of MNP went through dramatic enlargement from 105.8 nm (day 0) to 856.1 nm (day 7), indicating the better stability of LDH/MNP than MNP. The typical polymer dispersity index (PDI) values on day 0, 7 and 14 verified the better stability of LDH/MNP, too. Photothermal properties of LDH/MNP were assessed and the results ensured the representative photothermal properties of LDH/MNP. The fine cytocompatibility of LDH/MNP was verified via cytotoxicity test. Results confirmed that the agglomeration of MNP disappeared after its intercalation into LDH and LDH/MNP possessed fine stability as well as typical photothermal property. The intercalation of MNP into LDH gave the photothermal agent MNP a promising way for its better stability and long-term availability in photothermal treatment.
Collapse
Affiliation(s)
- Xue Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Department of Chemistry, School of Basic Medicine, Shanxi Medical University, Shanxi, 030001, China
| | - Yixuan Wang
- The First Clinical Medical College of Shanxi Medical University, Shanxi, 030001, China
| | - Xinkai Geng
- The First Clinical Medical College of Shanxi Medical University, Shanxi, 030001, China
| | - Jinghua Sun
- The First Clinical Medical College of Shanxi Medical University, Shanxi, 030001, China
| | - Yulong Liu
- Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People's Hospital, Fifth Hospital of Shanxi Medical University, Shanxi, 030001, China.
| |
Collapse
|
2
|
Croitoru AM, Ficai D, Ficai A. Novel Photothermal Graphene-Based Hydrogels in Biomedical Applications. Polymers (Basel) 2024; 16:1098. [PMID: 38675017 PMCID: PMC11053615 DOI: 10.3390/polym16081098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the last decade, photothermal therapy (PTT) has attracted tremendous attention because it is non-invasive, shows high efficiency and antibacterial activity, and minimizes drug side effects. Previous studies demonstrated that PTT can effectively inhibit the growth of bacteria and promotes cell proliferation, accelerating wound healing and tissue regeneration. Among different NIR-responsive biomaterials, graphene-based hydrogels with photothermal properties are considered as the best candidates for biomedical applications, due to their excellent properties. This review summarizes the current advances in the development of innovative graphene-based hydrogels for PTT-based biomedical applications. Also, the information about photothermal properties and the potential applications of graphene-based hydrogels in biomedical therapies are provided. These findings provide a great potential for supporting their applications in photothermal biomedicine.
Collapse
Affiliation(s)
- Alexa-Maria Croitoru
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 0500957 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Food Safety, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University for Science and Technology Politehnica Bucharest, Gh. Polizu St. 1-7, 011061 Bucharest, Romania;
- National Centre for Micro- and Nanomaterials, National University for Science and Technology Politehnica Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| |
Collapse
|
3
|
Dinatha IKH, Diputra AH, Wihadmadyatami H, Partini J, Yusuf Y. Nanofibrous electrospun scaffold doped with hydroxyapatite derived from sand lobster shell ( Panulirus homarus) for bone tissue engineering. RSC Adv 2024; 14:8222-8239. [PMID: 38469192 PMCID: PMC10925909 DOI: 10.1039/d4ra00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Healing of significant segmental bone defects remains a challenge, and various studies attempt to make materials that mimic bone structures and have biocompatibility, bioactivity, biodegradability, and osteoconductivity to native bone tissues. In this work, a nanofiber scaffold membrane of polyvinyl alcohol (PVA)/polyvinylpyrrolidone (PVP)/chitosan (CS) combined with hydroxyapatite (HAp) from sand lobster (SL; Panulirus homarus) shells, as a calcium source, was successfully synthesized to mimic the nanoscale extracellular matrix (ECM) in the native bone. The HAp from SL shells was synthesized by co-precipitation method with Ca/P of 1.67 and incorporated into the nanofiber membrane PVA/PVP/CS synthesized by the electrospinning method with varying concentrations, i.e. 0, 1, 3, and 5% (w/v). Based on the morphological and physicochemical analysis, the addition of HAp into the nanofiber successfully showed incorporation into the nanofiber with small agglomeration at HAp concentrations of 1, 3, and 5% (w/v). This led to a smaller fiber diameter with higher concentration of Hap, and incorporating HAp into the nanofiber could improve the mechanical properties of the nanofiber closer to the trabecula bone. Moreover, in general, swelling due to water absorption increases due to higher hydrophilicity at higher HAp concentrations and leads to the improvement of the degradation process and protein adsorption of the nanofiber. Biomineralization in a simulated body fluid (SBF) solution confirms that the HAp in the nanofiber increases bioactivity, and it can be seen that more apatite is formed during longer immersion in the SBF solution. The nanofiber PVA/PVP/CS HAp 5% has the most potential for osteoblast (MC3T3E1) cell viability after being incubated for 24 h, and it allowed the cell to attach and proliferate. Additionally, the higher HAp concentration in the nanofiber scaffold membrane can significantly promote the osteogenic differentiation of MC3T3E1 cells. Overall, the PVA/PVP/CS/HAp 5% nanofiber scaffold membrane has the most potential for bone tissue engineering.
Collapse
Affiliation(s)
- I Kadek Hariscandra Dinatha
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Arian H Diputra
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Juliasih Partini
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| | - Yusril Yusuf
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada Yogyakarta Indonesia
| |
Collapse
|
4
|
Yang Y, Wang P, Zhang G, He S, Xu B. Inorganic-Nanomaterial-Composited Hydrogel Dressings for Wound Healing. JOURNAL OF COMPOSITES SCIENCE 2024; 8:46. [DOI: 10.3390/jcs8020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Wound management heavily relies on the vital contribution of wound dressings, emphasizing the significance of finding an ideal dressing that can fulfill the intricate requirements of the wound healing process with multiple functions. A promising strategy is combining several materials and therapies to create multifunctional wound dressings. Nanocomposite hydrogel dressings based on nanomaterials, combining the advantages of nanomaterials and hydrogels in wound treatment, can significantly improve their respective performance and compensate for their shortcomings. A variety of nanocomposite wound dressings with diverse structures and synergistic functions have been developed in recent years, achieving ideal results in wound management applications. In this review, the multiple functions, advantages, and limitations of hydrogels as wound dressings are first discussed. Additionally, the application of inorganic nanomaterials in wound healing is also elaborated on. Furthermore, we focused on summarizing and analyzing nanocomposite hydrogel dressings for wound healing, which contain various inorganic nanomaterials, including metals, metal oxides, metal sulfides, carbon-based nanomaterials, and silicon-based nanoparticles. Finally, prospects for nanocomposite hydrogel wound dressings are envisaged, providing insights for further research in wound management.
Collapse
Affiliation(s)
- Ying Yang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Pingfei Wang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Guiju Zhang
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Shan He
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| | - Baocai Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
5
|
Ganguly S, Margel S. Fabrication and Applications of Magnetic Polymer Composites for Soft Robotics. MICROMACHINES 2023; 14:2173. [PMID: 38138344 PMCID: PMC10745923 DOI: 10.3390/mi14122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
6
|
Gandla K, Kumar KP, Rajasulochana P, Charde MS, Rana R, Singh LP, Haque MA, Bakshi V, Siddiqui FA, Khan SL, Ganguly S. Fluorescent-Nanoparticle-Impregnated Nanocomposite Polymeric Gels for Biosensing and Drug Delivery Applications. Gels 2023; 9:669. [PMID: 37623124 PMCID: PMC10453855 DOI: 10.3390/gels9080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Nanocomposite polymeric gels infused with fluorescent nanoparticles have surfaced as a propitious category of substances for biomedical purposes owing to their exceptional characteristics. The aforementioned materials possess a blend of desirable characteristics, including biocompatibility, biodegradability, drug encapsulation, controlled release capabilities, and optical properties that are conducive to imaging and tracking. This paper presents a comprehensive analysis of the synthesis and characterization of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels, as well as their biomedical applications, such as drug delivery, imaging, and tissue engineering. In this discourse, we deliberate upon the merits and obstacles linked to these substances, encompassing biocompatibility, drug encapsulation, optical characteristics, and scalability. The present study aims to provide an overall evaluation of the potential of fluorescent-nanoparticle-impregnated nanocomposite polymeric gels for biomedical applications. Additionally, emerging trends and future directions for research in this area are highlighted.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hyderabad 500075, India
| | - K. Praveen Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Government of NCT of Delhi, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - P. Rajasulochana
- Department of Microbiology, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kanchipuram 602105, India
| | - Manoj Shrawan Charde
- Department of Pharmaceutical Chemistry, Government College of Pharmacy, Karad 415124, India
| | - Ritesh Rana
- Department of Pharmaceutics, Himachal Institute of Pharmaceutical Education and Research (HIPER), Hamirpur 177033, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Rohtas 821305, India
| | - M. Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Vasudha Bakshi
- Department of Pharmaceutics, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Falak A. Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - Sharuk L. Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, India
- Department of Pharmaceutical Chemistry, School of Pharmacy, Anurag University, Hyderabad 500088, India
| | - S. Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
7
|
Li Y, Liu H, Ding Y, Li W, Zhang Y, Luo S, Xiang Q. The Use of Hydrogel-Based Materials for Radioprotection. Gels 2023; 9:gels9040301. [PMID: 37102914 PMCID: PMC10137482 DOI: 10.3390/gels9040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Major causes of the radiation-induced disease include nuclear accidents, war-related nuclear explosions, and clinical radiotherapy. While certain radioprotective drug or bioactive compounds have been utilized to protect against radiation-induced damage in preclinical and clinical settings, these strategies are hampered by poor efficacy and limited utilization. Hydrogel-based materials are effective carriers capable of enhancing the bioavailability of compounds loaded therein. As they exhibit tunable performance and excellent biocompatibility, hydrogels represent promising tools for the design of novel radioprotective therapeutic strategies. This review provides an overview of common approaches to radioprotective hydrogel preparation, followed by a discussion of the pathogenesis of radiation-induced disease and the current states of research focused on using hydrogels to protect against these diseases. These findings ultimately provide a foundation for discussions of the challenges and future prospects associated with the use of radioprotective hydrogels.
Collapse
Affiliation(s)
- Yang Li
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Han Liu
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaqun Ding
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanyu Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Yuansong Zhang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Qiang Xiang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
8
|
Huang X, Lee CS, Zhang K, Alhamzani AG, Hsiao BS. Sodium Alginate-Aldehyde Cellulose Nanocrystal Composite Hydrogel for Doxycycline and Other Tetracycline Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1161. [PMID: 37049257 PMCID: PMC10096764 DOI: 10.3390/nano13071161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
A novel composite hydrogel bead composed of sodium alginate (SA) and aldehyde cellulose nanocrystal (DCNC) was developed for antibiotic remediation through a one-step cross-linking process in a calcium chloride bath. Structural and physical properties of the hydrogel bead, with varying composition ratios, were analyzed using techniques such as BET analysis, SEM imaging, tensile testing, and rheology measurement. The optimal composition ratio was found to be 40% (SA) and 60% (DCNC) by weight. The performance of the SA-DCNC hydrogel bead for antibiotic remediation was evaluated using doxycycline (DOXY) and three other tetracyclines in both single- and multidrug systems, yielding a maximum adsorption capacity of 421.5 mg g-1 at pH 7 and 649.9 mg g-1 at pH 11 for DOXY. The adsorption mechanisms were investigated through adsorption studies focusing on the effects of contact time, pH, concentration, and competitive contaminants, along with X-ray photoelectron spectroscopy analysis of samples. The adsorption of DOXY was confirmed to be the synergetic effects of chemical reaction, electrostatic interaction, hydrogen bonding, and pore diffusion/surface deposition. The SA-DCNC composite hydrogel demonstrated high reusability, with more than 80% of its adsorption efficiency remaining after five cycles of the adsorption-desorption test. The SA-DCNC composite hydrogel bead could be a promising biomaterial for future antibiotic remediation applications in both pilot and industrial scales because of its high adsorption efficiency and ease of recycling.
Collapse
Affiliation(s)
- Xiangyu Huang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Cheng-Shiuan Lee
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, USA
- Research Center for Environmental Changes, Academia Sinica, Taipei 115, Taiwan
| | - Katherine Zhang
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | | | - Benjamin S. Hsiao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Kanungo S, Gupta N, Rawat R, Jain B, Solanki A, Panday A, Das P, Ganguly S. Doped Carbon Quantum Dots Reinforced Hydrogels for Sustained Delivery of Molecular Cargo. J Funct Biomater 2023; 14:jfb14030166. [PMID: 36976090 PMCID: PMC10057248 DOI: 10.3390/jfb14030166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Hydrogels have emerged as important soft materials with numerous applications in fields including biomedicine, biomimetic smart materials, and electrochemistry. Because of their outstanding photo-physical properties and prolonged colloidal stability, the serendipitous findings of carbon quantum dots (CQDs) have introduced a new topic of investigation for materials scientists. CQDs confined polymeric hydrogel nanocomposites have emerged as novel materials with integrated properties of the individual constituents, resulting in vital uses in the realm of soft nanomaterials. Immobilizing CQDs within hydrogels has been shown to be a smart tactic for preventing the aggregation-caused quenching effect and also for manipulating the characteristics of hydrogels and introducing new properties. The combination of these two very different types of materials results in not only structural diversity but also significant improvements in many property aspects, leading to novel multifunctional materials. This review covers the synthesis of doped CQDs, different fabrication techniques for nanostructured materials made of CQDs and polymers, as well as their applications in sustained drug delivery. Finally, a brief overview of the present market and future perspectives are discussed.
Collapse
Affiliation(s)
- Shweta Kanungo
- Department of Engineering Science and Humanities, Indore Institute of Science and Technology, Indore 452001, Madhya Pradesh, India
| | - Neeta Gupta
- Department of Chemistry, Govt. E. Raghavendra Rao P. G. Science College, Bilaspur 495001, Chhattisgarh, India
| | - Reena Rawat
- Department of Chemistry, Echelon Institute of Technology, Faridabad 121101, Haryana, India
| | - Bhawana Jain
- Department of Chemistry, Govt. V.Y.T. PG. Autonomous College, Durg 491001, Chhattisgarh, India
| | - Aruna Solanki
- Department of Chemistry, JNS Govt PG College Shujalpur, Affiliated to Vikram University Ujjain (M.P.), Dist Shajapur 465333, Madhya Pradesh, India
| | - Ashutosh Panday
- Department of Physics, Dr. C.V. Raman University, Kota, Bilaspur 495113, Chhattisgarh, India
| | - P Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| | - S Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
10
|
Ganguly S, Margel S. 3D printed magnetic polymer composite hydrogels for hyperthermia and magnetic field driven structural manipulation. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|