1
|
da Rosa de Souza PT, Manfro R, de Salles Santos FAO, Garcia GFF, Macedo NF, de Macedo BESF, Ignácio SA, Rosa EAR, de Souza EM, Azevedo-Alanis LR. Analysis of osseointegration of implants with macrogeometries with healing chambers: a randomized clinical trial. BMC Oral Health 2024; 24:1114. [PMID: 39300380 PMCID: PMC11412014 DOI: 10.1186/s12903-024-04857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND To verify the influence of macrogeometry with healing chambers on the osseointegration of dental implants by analyzing implant stability quotient (ISQ) and evaluate the correlation between insertion torque and ISQ insertion with different macrogeometries. METHODS In total, 26 implants were installed in the posterior mandible of eight patients with sufficient bone height for the installation of implants measuring 3.5 mm in diameter and 9.0 mm in length. The implants were categorized according to two types of macrogeometry: a test group (GT) with 13 conical implants with healing chambers and a control group (GC) with 13 conical implants with conventional threads. To insert the implants, a bone drilling protocol was used up to a diameter of 3 mm with the last helical bur. The insertion torque of the implants was evaluated, followed by the measurement of ISQ at 0 (T-0), 7 (T-7), 14 (T-14), 21 (T-21), 28 (T-28), and 42 (T-42) days. RESULTS The mean insertion torque was 43 Ncm in both groups, without a significant difference. Moreover, no significant difference in the ISQ values was found between the groups at different time points (p > 0.05), except at T-7 (GT = 69.87±1.89 and GC = 66.48±4.49; p = 0.01). Although there was no significant difference, ISQ median values were higher in the GT group than GC group at 28 days (GT = 67.98 and GC = 63.46; p = 0.05) and 42 days (GT = 66.12 and GC = 60.33; p = 0.09). No correlation was found between the insertion torque and ISQ insertion (p > 0.05). CONCLUSION Furthermore, implants with a 3.5 mm diameter macrogeometry, with or without healing chambers, inserted with a drilling protocol up to 3 mm in diameter of the last helical bur, led to a similar secondary stability, with no difference in ISQ values. Although, implants with healing chamber demonstrates ascending values in the graph of ISQ, having a trend of faster osseointegration than implants without healing chambers. Both macrogeometries provide a similar primary stability to implants. TRIAL REGISTRATION This study was registered retrospectively in ReBec (brazilian registry of clinical trials) under the number RBR-96n5×69, on the date of 19/06/2023.
Collapse
Affiliation(s)
| | - Rafael Manfro
- Graduate Program in Dentistry, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | | | | | - Nayara Flores Macedo
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | - Sérgio Aparecido Ignácio
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | - Evelise Machado de Souza
- Graduate Program in Dentistry, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | |
Collapse
|
2
|
Romasco T, De Bortoli Jr N, Paulo De Bortoli J, Jorge Jayme S, Piattelli A, Di Pietro N. Primary stability evaluation of different morse cone implants in low-density artificial bone blocks: A comparison between high-and low-speed drilling. Heliyon 2024; 10:e35225. [PMID: 39170202 PMCID: PMC11336439 DOI: 10.1016/j.heliyon.2024.e35225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
This study aimed to evaluate various biomechanical parameters associated with the primary stability of Maestro and Due Cone implants placed in low-density artificial bones, prepared using high-speed drilling with irrigation and low-speed drilling without irrigation. The insertion torque (IT), removal torque (RT), and implant stability quotient (ISQ) values were recorded for Maestro and Due Cone implants placed in low-density polyurethane blocks (10 and 20 pounds per cubic foot (PCF) with and without a cortical layer) prepared using high-speed and low-speed with or without irrigation using a saline solution, respectively. A three-way ANOVA model and Tukey's post-hoc test were conducted, presenting data as means and standard deviations. P-values equal to or less than 0.05 were considered statistically significant. No statistically significant differences in IT, RT, and ISQ between drilling speeds were observed. However, Maestro implants exhibited lower IT and RT values after high- and low-speed drilling across almost all polyurethane blocks, significantly evident in the 20 PCF density block for IT and in the 20 PCF density block with the cortical layer for the RT with low-speed drilling (IT: 47.33 ± 10.02 Ncm and 16.00 ± 12.49 Ncm for Due Cone and Maestro implants, respectively, with p < 0.01; RT: 44.67 ± 22.81 Ncm and 20.01 ± 4.36 Ncm for Due Cone and Maestro implants, respectively, with p < 0.05) and among the same implant types inserted in different bone densities. Additionally, the study found that for all bone densities and drilling speeds, both implants registered ISQ values exceeding 60, except for the lowest-density polyurethane block. Overall, it can be inferred that low-speed drilling without irrigation achieved biomechanical parameters similar to conventional drilling with both implant types, even with lower IT values in the case of Maestro implants. These findings suggest a promising potential use of low-speed drilling without irrigation in specific clinical scenarios, particularly when focusing on preparation depth or when ensuring proper irrigation is challenging.
Collapse
Affiliation(s)
- Tea Romasco
- Center for Advanced Studies and Technology-CAST, “G. D'Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Nilton De Bortoli Jr
- Department of Oral Implantology, Associação Paulista Dos Cirurgiões Dentistas-APCD, São Bernardo Do Campo, 02011-000, Brazil
| | - Joao Paulo De Bortoli
- Biomaterials Division, New York University College of Dentistry, New York, 10010, NY, USA
| | - Sergio Jorge Jayme
- Department of Dental Materials and Prosthetics, School of Dentistry of Ribeirão Preto, University of São Paulo, 14040-904, Ribeirão Preto, SP, Brazil
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131, Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, Av. de Los Jerónimos 135, 30107, Guadalupe de Maciascoque, Spain
| | - Natalia Di Pietro
- Center for Advanced Studies and Technology-CAST, “G. D'Annunzio” University of Chieti-Pescara, Via Luigi Polacchi 11, 66100, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, “G. D'Annunzio” University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
3
|
Scarano A, Khater AGA, Gehrke SA, Inchingolo F, Tari SR. Animal Models for Investigating Osseointegration: An Overview of Implant Research over the Last Three Decades. J Funct Biomater 2024; 15:83. [PMID: 38667540 PMCID: PMC11051165 DOI: 10.3390/jfb15040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Dental implants and bone augmentation are among dentistry's most prevalent surgical treatments; hence, many dental implant surfaces and bone grafts have been researched to improve bone response. Such new materials were radiologically, histologically, and histomorphometrically evaluated on animals before being used on humans. As a result, several studies used animals to evaluate novel implant technologies, biocompatibility, surgical techniques, and osseointegration strategies, as preclinical research on animal models is essential to evaluate bioactive principles (on cells, compounds, and implants) that can act through multiple mechanisms and to predict animal behavior, which is difficult to predict from in vitro studies alone. In this study, we critically reviewed all research on different animal models investigating the osseointegration degree of new implant surfaces, reporting different species used in the osseointegration research over the last 30 years. Moreover, this is the first study to summarize reviews on the main animal models used in the translational research of osseointegration, including the advantages and limitations of each model and determining the ideal location for investigating osseointegration in small and large animal models. Overall, each model has advantages and disadvantages; hence, animal selection should be based on the cost of acquisition, animal care, acceptability to society, availability, tolerance to captivity, and housing convenience. Among small animal models, rabbits are an ideal model for biological observations around implants, and it is worth noting that osseointegration was discovered in the rabbit model and successfully applied to humans.
Collapse
Affiliation(s)
- Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti–Pescara, 66100 Chieti, Italy;
| | - Ahmad G. A. Khater
- Faculty of Oral and Dental Medicine, Egyptian Russian University (ERU), Badr City 11829, Egypt;
- Health Affairs Directorate, Egyptian Ministry of Health and Population, Banisuif 62511, Egypt
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Sergio Rexhep Tari
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti–Pescara, 66100 Chieti, Italy;
| |
Collapse
|
4
|
Gomes C, Mesnard M, Ramos A. Bone density and proximal support effects on dental implant stability - Finite element analysis and in vitro experiments. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101512. [PMID: 37209971 DOI: 10.1016/j.jormas.2023.101512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/19/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
OBJECTIVES The application of dental implants presents the occurrence of implant failures associated with bone proximal support. This study aims to assess implant behavior, in particular implant stability and strain distribution in the bone at different bone densities, and the effect of proximal bone support. MATERIAL AND METHODS Three bone densities (D20, D15, and D10) were considered in the experimental in vitro study, represented by solid rigid polyurethane foam and two conditions of bone support in the proximal region. A finite element model was developed and validated experimentally and a Branemark model at a 3:1 scale was implanted in the experiments; the model was loaded and extracted. RESULTS The results of the experimental models validate the finite element models with a correlation R2 equal to 0.899 and NMSE of 7%. The implant extraction tests for the effect of bone properties in the maximum load were 2832 N for D20 and 792 N for D10. The effect of proximal bone support changes the implant stability was observed experimentally; at 1 mm less bone support decreases by 20% of stability and at 2 mm by 58% for D15 density. CONCLUSIONS Bone properties and bone quantity are important for the initial stability of the implant. A bone volume fraction of less than 24 g/cm3 exhibits poor behavior and is not indicated for implantation. Proximal bone support reduces the primary stability of the implant and the effect is critical in lower bone density.
Collapse
Affiliation(s)
- C Gomes
- University of Aveiro, Biomechanics Research Group, Department of Mechanical Engineering, Aveiro 3810-193, Portugal
| | - M Mesnard
- University de Bordeaux, Institut de Mécanique et d'Ingénierie, Department Ingénierie Mécanique et Conception, CNRS UMR 5295, Talence 33405, France
| | - A Ramos
- University of Aveiro, Biomechanics Research Group, Department of Mechanical Engineering, Aveiro 3810-193, Portugal.
| |
Collapse
|
5
|
Martins RG, Castro TSD, Dib LL, Gehrke SA, Mesquita AMM. Influence of Restorative Material on the Distribution of Loads to the Bone in Hybrid Abutment Crowns-In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1188. [PMID: 37512000 PMCID: PMC10384236 DOI: 10.3390/medicina59071188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023]
Abstract
Background: The objective of this study was to evaluate the load transmitted to the peri-implant bone by seven different restorative materials in single-unit rehabilitations with morse taper implants using a strain gauge. Materials: In a polyurethane block that simulated type III bone, a morse taper platform implant was installed (3.5 × 11 mm) in the center and 1 mm below the test base surface, and four strain gauges were installed around the implant, simulating the mesial, distal, buccal and lingual positions. Seven similar hybrid abutment crowns were crafted to simulate a lower premolar using different materials: 1-PMMA; 2-glass ceramic over resin matrix; 3-PEEK + lithium disilicate; 4-metal-ceramic; 5-lithium disilicate; 6-zirconia + feldspathic; 7-monolithic zirconia. All groups underwent axial and oblique loads (45 degrees) of 150 N from a universal testing machine. Five measurements (n = 5) were performed with each material and for each load type; the microdeformation data underwent statistical analysis. The data were obtained in microdeformation (με), and the significance level was set at p ≤ 0.05. Results: There was no statistically significant difference in the evaluation among the materials under either the axial load or the oblique load at 45 degrees. In turn, in the comparison between axial load and oblique load, there was a difference in load for all materials. Conclusion: The restorative material did not influence the load transmitted to the bone. Furthermore, the load transmitted to the bone was greater when it occurred obliquely at 45° regardless of the material used. In conclusion, it appeared that the different elastic modulus of each material did not influence the load transmission to the peri-implant bone.
Collapse
Affiliation(s)
| | | | - Luciano Lauria Dib
- Department of Implantology, Paulista University-UNIP, São Paulo 04026-002, Brazil
| | | | | |
Collapse
|
6
|
Comuzzi L, Tumedei M, Petrini M, Romasco T, Lorusso F, De Angelis F, Piattelli A, Tatullo M, Di Pietro N. Clinical and Radiological Evaluation of a Self-Condensing Bone Implant in One-Stage Sinus Augmentation: A 3-Year Follow-Up Retrospective Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2583. [PMID: 36767949 PMCID: PMC9915976 DOI: 10.3390/ijerph20032583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Stabilization of dental implants in the sinus region with a bone height below 4 mm gen-erally requires a two-stage sinus floor elevation surgery. To improve this aspect, the aim of this retrospective study was to demonstrate the feasibility of performing a one-stage maxillary sinus augmentation using an innovative self-condensing implant design, even in case of a bone height close to 2 mm. Clinical and radiological outcomes from 54 patients (26 females; 28 males; 69 total implants positioned) were analyzed 3 years post-surgery. The three-dimensional grafts change was evaluated by Cone-Beam Computed Tomography (CBCT) before surgery (T0), immediately after surgery (T1), and 1-year post-surgery (T2). The sinus floor levels measured at the medial (M-W), middle (MD-W), and lateral (L-W) walls reported: M-W of 1.9 ± 2.4 mm (T1) and 1.7 ± 2.6 mm (T2); MD-W of -0.1 ± 2.7 mm (T1) and 0.7 ± 2.4 mm (T2); L-W of 3.1 ± 3.0 mm (T1) and 3.1 ± 3.0 mm (T2); besides a bone crest height (C-F) of 4.6 ± 2.0 mm (T1) and 12.1 ± 1.4 mm (T2). Moreover, after 3 years only 1 implant was lost, and so an implant survival rate of 98.55% was recorded. In conclusion, these results suggest the efficacy of using this implant design for a one-stage sinus lift approach, not only in terms of increased implant survival rate and decreased marginal bone loss, but also for its potential applicability in case of reduced bone height.
Collapse
Affiliation(s)
- Luca Comuzzi
- Independent Researcher, San Vendemiano-Conegliano, 31020 Treviso, Italy
| | - Margherita Tumedei
- Department of Medical, Surgical, and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
| | - Francesco De Angelis
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Marco Tatullo
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
- Center for Advanced Studies and Technology-CAST, “G. d’Annunzio” University of Chieti-Pescara, 66013 Chieti, Italy
| |
Collapse
|
7
|
Di Stefano DA, Arosio P, Capparè P, Barbon S, Gherlone EF. Stability of Dental Implants and Thickness of Cortical Bone: Clinical Research and Future Perspectives. A Systematic Review. MATERIALS 2021; 14:ma14237183. [PMID: 34885335 PMCID: PMC8658728 DOI: 10.3390/ma14237183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022]
Abstract
Dental surgery implantation has become increasingly important among procedures that aim to rehabilitate edentulous patients to restore esthetics and the mastication ability. The optimal stability of dental implants is correlated primarily to the quality and quantity of bone. This systematic literature review describes clinical research focusing on the correlation between cortical bone thickness and primary/secondary stability of dental fixtures. To predict successful outcome of prosthetic treatment, quantification of bone density at the osteotomy site is, in general, taken into account, with little attention being paid to assessment of the thickness of cortical bone. Nevertheless, local variations in bone structure (including cortical thickness) could explain differences in clinical practice with regard to implantation success, marginal bone resorption or anchorage loss. Current knowledge is preliminarily detailed, while tentatively identifying which inconclusive or unexplored aspects merit further investigation.
Collapse
Affiliation(s)
- Danilo Alessio Di Stefano
- Dental School, Vita-Salute University IRCCS San Raffaele, 20132 Milan, Italy; (D.A.D.S.); (E.F.G.)
- Private Practitioner, 20132 Milan, Italy
| | | | - Paolo Capparè
- Department of Dentistry, Vita-Salute University IRCCS San Raffaele, 20132 Milan, Italy
- Correspondence: ; Tel.: +39-0226433619
| | - Silvia Barbon
- Section of Human Anatomy, Department of Neurosciences, Padua University, 35121 Padua, Italy;
| | - Enrico Felice Gherlone
- Dental School, Vita-Salute University IRCCS San Raffaele, 20132 Milan, Italy; (D.A.D.S.); (E.F.G.)
| |
Collapse
|
8
|
Can the design of the instruments used for undersized osteotomies influence the initial stability of implants installed in low-density bone? An in vitro pilot study. PLoS One 2021; 16:e0257985. [PMID: 34618848 PMCID: PMC8496820 DOI: 10.1371/journal.pone.0257985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Objectives The aims of this study were to compare the initial implant stability obtained using four different osteotomy techniques in low-density synthetic bone, to evaluate the instrument design in comparison to the implant design, and to determinate a possible correlation between the insertion torque and initial stability quotient (ISQ). Materials and methods Four groups were identified in accordance with the osteotomy technique used (n = 10 implants per group): group G1, osteotomy using the recommended drilling sequence; group G2, osteotomy using an undersized compactor drill; group G3, osteotomy using an undersized drill; and group G4, osteotomy using universal osseodensification drills. Two polyurethane blocks were used: block 1, with a medullary portion of 10 pounds per cubic foot (PCF 10) and with a 1 mm cortical portion of PCF 40, and block 2, with a medullary of PCF 15 and with a 2 mm cortical portion of PCF 40. Tapered implants of 4 mm in diameter and 11 mm in length were used. The insertion torque (IT) and ISQ were measured. The dimensions of the final instrument used in each group and the dimensions of the implant were used to calculate the total area of each part, and these data were compared. Results Differences between the four groups were found for IT and ISQ values depending on the technique used for the osteotomy in the two synthetic bone models (p < 0.0001). All groups showed lower values of initial stability in block 1 than in block 2. Conclusions Undersized osteotomies with instruments designed according to the implant body significantly increased the initial stability values compared to beds prepared with universal drills and using the drilling sequence standardized by the manufacturer.
Collapse
|
9
|
Tumedei M, Piattelli A, Falco A, De Angelis F, Lorusso F, Di Carmine M, Iezzi G. An in vitro evaluation on polyurethane foam sheets of the insertion torque, removal torque values, and resonance frequency analysis (RFA) of a self-tapping threads and round apex implant. CELLULAR POLYMERS 2020. [DOI: 10.1177/0262489320971796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The dental implant primary stability and micromovement absence represent critical factor for dental implant osseointegration. The aim of the present in vitro investigation was to simulate the bone response on different polyurethane densities the effect of self-tapping threads and round apex implant geometry. A total of 40 implants were positioned in D1, D2, D3 and D4 polyurethane block densities following a calibrated drilling protocol. The Insertion, removal Torque and resonance frequency analysis (RFA) means were calculated. All experimental conditions showed insertion torque values >30 Ncm. A significant higher insertion torque, removal and RFA was present in D1 polyurethane. Similar evidences were evidenced for D3 and D4. The effectiveness of the present study suggested a valuable clinical advantage for self-tapping threads and round apex implant using, such as in case of reduced bone density in the posterior maxilla
Collapse
Affiliation(s)
- Margherita Tumedei
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, Chieti, Italy
- Chair of Biomaterials Engineering, Catholic University of San Antonio de Murcia (UCAM), Av. de los Jerónimos, Guadalupe, Murcia, Spain
- Fondazione Villa Serena per la Ricerca, Città Sant’Angelo (PE), Italy
| | | | - Francesco De Angelis
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | - Felice Lorusso
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, Chieti, Italy
| | | | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, Chieti, Italy
| |
Collapse
|
10
|
Histological and Histomorphometrical Evaluation of a New Implant Macrogeometry. A Sheep Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17103477. [PMID: 32429405 PMCID: PMC7277453 DOI: 10.3390/ijerph17103477] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Decompression or healing chambers between the threads have been proposed to improve and accelerate the osseointegration process of dental implants. The aim of the present work was to test, in an in vivo sheep study, if healing chambers between the threads could produce a better osseointegration process. Thirty titanium implants (15 conventional design (control) and 15 implants with healing chambers (test)) were inserted in a random fashion in the tibia of 3 sheep. The animals were euthanized after 30 days of healing, and the retrieved specimens treated to obtain thin ground sections. Histological observations showed that the quantity of newly formed bone growing in an apical direction was lower in the control group (1095 µm) when compared to the Test group (1658 µm). This difference was statistically significant. Moreover, a layer of osteogenic matrix was present around the portion of implants immersed in the marrow spaces. This osteogenic tissue was thicker in the test group. In conclusion, the present study confirmed the very good results in implants with healing chambers that presented a higher percentage of new bone formation.
Collapse
|
11
|
Primary Stability of Dental Implants in Low-Density (10 and 20 pcf) Polyurethane Foam Blocks: Conical vs Cylindrical Implants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082617. [PMID: 32290361 PMCID: PMC7216137 DOI: 10.3390/ijerph17082617] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Background: The aim of the present study was to compare, in low-density polyurethane blocks, the primary implant stability values (micromobility) and removal torque values of three different implant geometries in two different bone densities representing the structure of the human posterior jaws. Methods: A total of 60 implants were used in the present investigation: twenty implants for each of three groups (group A, group B, and group C), in both polyurethane 10 pcf and 20 pcf densities. The insertion torque, pull-out torque, and implant stability quotient (ISQ) values were obtained. Results: No differences were found in the values of Group A and Group B implants. In both these groups, the insertion torques were quite low in the 10 pcf blocks. Better results were found in the 20 pcf blocks, which showed very good stability of the implants. The pull-out values were slightly lower than the insertion torque values. High ISQ values were found in Group A and B implants. Lower values were present in Group C implants. Conclusions: The present investigation evaluated implants with different geometries that are available on the market, and not experimental implants specifically created for the study. The authors aimed to simulate real clinical conditions (poor-density bone or immediate post-extraction implants) in which knowledge of dental implant features, which may be useful in increasing the primary stability, may help the oral surgeon during the surgery planning.
Collapse
|
12
|
Neutralized Dicalcium Phosphate and Hydroxyapatite Biphasic Bioceramics Promote Bone Regeneration in Critical Peri-Implant Bone Defects. MATERIALS 2020; 13:ma13040823. [PMID: 32054126 PMCID: PMC7079663 DOI: 10.3390/ma13040823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the efficacy of bone regeneration in developed bioceramics composed of dicalcium phosphate and hydroxyapatite (DCP/HA). Critical bony defects were prepared in mandibles of beagles. Defects were grafted using DCP/HA or collagen-enhanced particulate biphasic calcium phosphate (TCP/HA/Col), in addition to a control group without grafting. To assess the efficacy of new bone formation, implant stability quotient (ISQ) values, serial bone labeling, and radiographic and histological percentage of marginal bone coverage (PMBC) were carefully evaluated four, eight, and 12 weeks after surgery. Statistically significant differences among the groups were observed in the histological PMBC after four weeks. The DCP/HA group consistently exhibited significantly higher ISQ values and radiographic and histological PMCB eight and 12 weeks after surgery. At 12 weeks, the histological PMBC of DCP/HA (72.25% ± 2.99%) was higher than that in the TCP/HA/Col (62.61% ± 1.52%) and control groups (30.64% ± 2.57%). After rigorously evaluating the healing of biphasic DCP/HA bioceramics with a critical size peri-implant model with serial bone labeling, we confirmed that neutralized bioceramics exhibiting optimal compression strength and biphasic properties show promising efficacy in fast bone formation and high marginal bone coverage in peri-implant bone defects.
Collapse
|