1
|
Sharma A, Bharti PS. Transforming orthodontic retention: potential of 3D printing and biocompatible material characteristics. J Med Eng Technol 2025; 49:8-33. [PMID: 39976311 DOI: 10.1080/03091902.2025.2466198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
This review article delves into the cutting-edge realm of 3D printing and its impact on the fabrication of customised orthodontic retainers, which is an essential utility in the prevention of relapse post orthodontic treatment. This review evaluates the use of biocompatible materials and provides insight into future perspectives and improvements in this field. It highlights the potential of data collecting method and 3D printing to improve orthodontic retainers' fabrication and emphasises the importance of using biocompatible materials for patient safety and efficacy. It also explains cytotoxic qualities of retainer fabrication materials, which are vital for safeguarding the oral health of the patient. The evaluation procedure enables the early diagnosis and correction of any potential difficulties, such as maladjustment or inappropriate fit, allowing for a more effective treatment. It illustrates the breakthroughs and innovations in the field of orthodontics, the advantages of 3D printing over conventional methods, as well as the advantages and disadvantages of various fabrication method. Incorporating 3D printing and review into the production of orthodontic retainers enhances the overall effectiveness and efficiency of patient treatment.
Collapse
Affiliation(s)
- Anmol Sharma
- USIC&T, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | | |
Collapse
|
2
|
Zheng L, Zhang Y, Bai Y, Zhang Z, Wu Q. Study on the mechanical and aging properties of an antibacterial composite resin loaded with fluoride-doped nano-zirconia fillers. Front Bioeng Biotechnol 2024; 12:1397459. [PMID: 38846803 PMCID: PMC11153679 DOI: 10.3389/fbioe.2024.1397459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Preventing the occurrence of secondary caries serves as one of the significant issues in dental clinic, thus make it indispensable to improving the properties of conventional composite resin (CR) by developing a novel CR. In present study, two groups of experimental CRs loaded with different contents of fluoride-doped nano-zirconia fillers (25 wt% and 50 wt%) were fabricated. The surface topography, mechanical performance, fluoride release, antibacterial effect, aging property and cytotoxicity of the experimental CRs were evaluated subsequently. A uniform distribution of the F-zirconia fillers over the whole surface of resin matrix could be observed. The experimental CRs showed continuous fluoride release within 28 days, which was positively correlated with the content of F-zirconia fillers. Moreover, the amount of fluoride release increased in the acidic buffer. Addition of F-zirconia fillers could improve the color stability, wear resistance and microhardness of the experimental CRs, without reducing the flexure strength. Furtherly, the fluoride ions released continuously from the experimental CRs resulted in effective contact and antibacterial properties, while they showed no cytotoxicity. As a consequence, considerations can be made to employ this new kind of composite resin loaded with fluoride-doped nano-zirconia fillers to meet clinical requirements when the antimicrobial benefits are desired.
Collapse
Affiliation(s)
- Liyuan Zheng
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yi Zhang
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Yuming Bai
- Department of Orthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Zhisheng Zhang
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| | - Qianju Wu
- Department of Prosthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, China
| |
Collapse
|
3
|
Elhmali HT, Stajcic I, Stajcic A, Pesic I, Jovanovic M, Petrovic M, Radojevic V. Influence of Novel SrTiO 3/MnO 2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. Polymers (Basel) 2024; 16:278. [PMID: 38276687 PMCID: PMC10820619 DOI: 10.3390/polym16020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/27/2024] Open
Abstract
While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the leaching of residual monomer and volatile additives that could pose a threat to human health. It has been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2, which showed the trapping potential of volatiles. Investigations of mechanical properties have revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this study revealed the reinforcing potential of hybrid nanoparticles that could find application in other polymers as well.
Collapse
Affiliation(s)
- Houda Taher Elhmali
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (H.T.E.); (M.J.); (M.P.); (V.R.)
| | - Ivana Stajcic
- Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, P.O. Box 522, 11001 Belgrade, Serbia
| | - Aleksandar Stajcic
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (I.P.)
| | - Ivan Pesic
- Center for Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (A.S.); (I.P.)
| | - Marija Jovanovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (H.T.E.); (M.J.); (M.P.); (V.R.)
| | - Milos Petrovic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (H.T.E.); (M.J.); (M.P.); (V.R.)
| | - Vesna Radojevic
- Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia; (H.T.E.); (M.J.); (M.P.); (V.R.)
| |
Collapse
|
4
|
Shekofteh K, Kashi TJ, Behroozibakhsh M, Sadr A, Najafi F, Bagheri H. Evaluation of physical/mechanical properties of an experimental dental composite modified with a zirconium-based metal-organic framework (MOF) as an innovative dental filler. Dent Mater 2023; 39:790-799. [PMID: 37455205 DOI: 10.1016/j.dental.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES This study aimed to modify an experimental dental composite using a synthesized nano-structured methacrylated zirconium-based MOF to enhance physical/mechanical properties. METHODS The previously known Uio-66-NH2 MOF was first synthesized and post-modified with Glycidyl Methacrylate (GMA). Fourier Transform Infrared (FTIR) Spectroscopy and CHNS analysis confirmed the post-modification reaction. The prepared filler was investigated by XRD, BET, SEM-EDS, and TEM. The experimental composite was prepared by mixing 60% wt. of resin matrix with 40% wt. of fillers, including silanized silica (SS) or Uio-66-NH-Me (UM). The experimental composites' depth of cure (DPC) was investigated in five groups (G1 =40% SS, G2 =30%SS+10%UM, G3 =20%SS+20%UM, G4 =10%SS+30%UM, G5 =40%UM). Then flexural strength(FS), Elastic Modulus(EM), solubility(S), water sorption(WS), degree of conversion(DC), polymerization shrinkage(PS), and polymerization stress(PSR) of the groups with DPC of more than 1 mm were investigated. Finally, the cytotoxicity of composites was studied. RESULTS The groups with more than 20% wt. UM, filler (G4, G5) had lesser than 1 mm DPC. Therefore, we investigated three groups' physical and mechanical properties with lower than 20% UM filler (G1-G3). Within these groups, G3 has a higher FS, EM (P < 0.05), and lower WS and S (P < 0.05). DC dropped in G2 and G3 compared to G1 (p < 0.05), but there was no significant difference between G2 and G3 (P = 0.594). SIGNIFICANCE This new filler is an innovative coupling-agent free filler and can be part of dental filler technology itself. It can also introduce a new group of dental fillers based on MOFs, but it still needs a complete investigation to be widely used.
Collapse
Affiliation(s)
- Kiana Shekofteh
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Jafarzadeh Kashi
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadr
- Department of Restorative Dentistry, Biomimetics Biomaterials Biophotonics Biomechanics & Technology Laboratory, School of Dentistry, University of Washington, WA, USA
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Hossein Bagheri
- Dental Materials Research Center; Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Jamel RS, AL-Murad MA, Farhan Alkhalidi E. The efficacy of reinforcement of glass fibers and ZrO 2 nanoparticles on the mechanical properties of autopolymerizing provisional restorations (PMMA). Saudi Dent J 2023; 35:707-713. [PMID: 37817789 PMCID: PMC10562113 DOI: 10.1016/j.sdentj.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/12/2023] Open
Abstract
Objective to investigate and compare the reinforcing effects of glass fibers (GFs) and ZrO2 nanoparticles at different ratios on the Flexural Strength (FS), Microhardness (MH), and Surface Roughness (SR) of autopolymerizing provisional PMMA. Methods A total of one hundred and twenty specimens of autopolymerizing PMMA were prepared for FS, MH, and SR tests and grouped as follows: no additives (control group), for the tested groups, different ratios of GFs and ZrO2 at 5% of autopolymerizing PMMA were incorporated. The ratios of GFs/ZrO2 nanoparticles were 0%-5%, 1%-4%, 2%-3%, 2.5%-2.5%, 3%-2%, 4%-1% and 5%-0% (n = 5). The FS was evaluated using the three-point bending test, MH was evaluated using the Vickers microhardness tester and SR was evaluated using a contact-type profilometer. Data were analyzed using ANOVA, Tukey's test, and Person correlation at 0.05 level of significance. Results The unreinforced group had the lowest FS, MH, and SR mean values followed by (0%GFs + 5% ZrO2), (1% GFs + 4% ZrO2), (2% GFs + 3% ZrO2), (2.5% GFs + 2.5% ZrO2), (3% GFs + 2% ZrO2), (4% GFs + 1% ZrO2) and (5% GFs + 0% ZrO2) which had the highest values. Conclusion Hybrid reinforcement with GFs, ZrO2 nanoparticles, or a combination of them effectively improved flexural strength and microhardness of autopolymerizing provisional PMMA that would create provisional restorations with extended clinical service. GFs demonstrated superior reinforcing effects compared to ZrO2 nanoparticles. However, reinforcement with 2.5-5% GFs increased the surface roughness for provisional restoration.
Collapse
Affiliation(s)
- Raghad S. Jamel
- Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Maha A. AL-Murad
- Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Emad Farhan Alkhalidi
- Department of Conservative Dentistry, College of Dentistry, University of Mosul, Mosul, Iraq
| |
Collapse
|
6
|
Wang Y, Yu DG, Liu Y, Liu YN. Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles. J Funct Biomater 2022; 13:jfb13040289. [PMID: 36547549 PMCID: PMC9787859 DOI: 10.3390/jfb13040289] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Electrospinning is an advanced technology for the preparation of drug-carrying nanofibers that has demonstrated great advantages in the biomedical field. Electrospun nanofiber membranes are widely used in the field of drug administration due to their advantages such as their large specific surface area and similarity to the extracellular matrix. Different electrospinning technologies can be used to prepare nanofibers of different structures, such as those with a monolithic structure, a core-shell structure, a Janus structure, or a porous structure. It is also possible to prepare nanofibers with different controlled-release functions, such as sustained release, delayed release, biphasic release, and targeted release. This paper elaborates on the preparation of drug-loaded nanofibers using various electrospinning technologies and concludes the mechanisms behind the controlled release of drugs.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| | - Yang Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ya-Nan Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (D.-G.Y.); (Y.-N.L.)
| |
Collapse
|
7
|
Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials. Polymers (Basel) 2022; 14:polym14245346. [PMID: 36559715 PMCID: PMC9785261 DOI: 10.3390/polym14245346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understand the influence of the preparation conditions of the restorative materials. Through FT-IR spectrometry, the crosslinking degree of the commercial restorative materials have been investigated and different conversion values were obtained (from ~17% to ~90%) but more importantly, it was shown that the polymerization environment exhibits a significant influence on the crosslinking degree of the resin-based composites especially for obtaining degrees of higher polymerization. Additionally, the mechanical properties of the restorative materials were studied using the nanoindentation technique showing that the nano-hardness behavior is strongly influenced not only by the polymerization lamp position, but also by the chemical structure of the materials and polymerization conditions. Thus, the nanoindentation results showed that the highest nano-hardness values (~0.86 GPa) were obtained in the case of the flowable C3 composite that contains BisEMA and UDMA as a polymerizable organic matrix when crosslinked at 1 mm distance from the curing lamp using glycerin as an oxygen-inhibitor layer.
Collapse
|