1
|
Brito G, Sousa GF, Santana MV, Aguiar Furtado AS, E Silva MDCS, Lima Verde TF, Barbosa R, Alves TS, Reis Vasconcellos LM, Sobral Silva LA, Freitas Viana VG, Figueredo-Silva J, Maia Filho AM, Marciano FR, Lobo AO. In Situ Printing of Polylactic Acid/Nanoceramic Filaments for the Repair of Bone Defects Using a Portable 3D Device. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13135-13145. [PMID: 39033545 PMCID: PMC11891858 DOI: 10.1021/acsami.4c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
In situ 3D printing is attractive for the direct repair of bone defects in underdeveloped countries and in emergency situations. So far, the lack of an interesting method to produce filament using FDA-approved biopolymers and nanoceramics combined with a portable strategy limits the use of in situ 3D printing. Herein, we investigated the osseointegration of new nanocomposite filaments based on polylactic acid (PLA), laponite (Lap), and hydroxyapatite (Hap) printed directly at the site of the bone defect in rats using a portable 3D printer. The filaments were produced using a single-screw extruder (L/D = 26), without the addition of solvents that can promote the toxicity of the materials. In vitro performance was evaluated in the cell differentiation process with mesenchymal stem cells (MSC) by an alkaline phosphatase activity test and visualization of mineralization nodules; a cell viability test and total protein dosage were performed to evaluate cytotoxicity. For the in vivo analysis, the PLA/Lap composite filaments with a diameter of 1.75 mm were printed directly into bone defects of Wistar rats using a commercially available portable 3D printer. Based on the in vitro and in vivo results, the in situ 3D printing technique followed by rapid cooling proved to be promising for bone tissue engineering. The absence of fibrous encapsulation and inflammatory processes became a good indicator of effectiveness in terms of biocompatibility parameters and bone tissue formation, and the use of the portable 3D printer showed a significant advantage in the application of this material by in situ printing.
Collapse
Affiliation(s)
- Guilherme
Castro Brito
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Gustavo Fernandes Sousa
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Moises Virgens Santana
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - André Sales Aguiar Furtado
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Millena de Cassia Sousa E Silva
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Thiago Ferreira
Candido Lima Verde
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Renata Barbosa
- LAPCON—Laboratory
of Polymers and Conjugated Materials, Technology Center CT, Materials
Science & Engineering Graduate Program, UFPI−Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Tatianny Soares Alves
- LAPCON—Laboratory
of Polymers and Conjugated Materials, Technology Center CT, Materials
Science & Engineering Graduate Program, UFPI−Federal University of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Luana Marotta Reis Vasconcellos
- Institute
of Science and Technology, São Paulo
State University (UNESP) 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, São Paulo, Brazil
| | - Leonardo Alvares Sobral Silva
- Institute
of Science and Technology, São Paulo
State University (UNESP) 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, São Paulo, Brazil
| | - Vicente Galber Freitas Viana
- Postgraduate
Program in Materials Engineering, Federal Institute of Education,
Science and Technology (IFPI), Campus Teresina
Central, Teresina 64001-270, Piauí, Brazil
| | - José Figueredo-Silva
- Biotechnology
Research Center, State University of Piauí, Teresina 64003-120, Piauí, Brazil
| | | | - Fernanda Roberta Marciano
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
- Department
of Physics, UFPI−Federal University
of Piauí, Teresina 64049-550, Piauí, Brazil
| | - Anderson Oliveira Lobo
- LIMAV−Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Materials Science &
Engineering Graduate Program, UFPI−Federal
University of Piauí, Teresina 64049-550, Piauí, Brazil
| |
Collapse
|
2
|
da Silva WN, Carvalho Costa PA, Scalzo Júnior SRA, Ferreira HAS, Prazeres PHDM, Campos CLV, Rodrigues Alves MT, Alves da Silva NJ, de Castro Santos AL, Guimarães LC, Chen Ferris ME, Thatte A, Hamilton A, Bicalho KA, Lobo AO, Santiago HDC, da Silva Barcelos L, Figueiredo MM, Teixeira MM, Vasconcelos Costa V, Mitchell MJ, Frézard F, Pires Goulart Guimaraes P. Ionizable Lipid Nanoparticle-Mediated TRAIL mRNA Delivery in the Tumor Microenvironment to Inhibit Colon Cancer Progression. Int J Nanomedicine 2024; 19:2655-2673. [PMID: 38500680 PMCID: PMC10946446 DOI: 10.2147/ijn.s452896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Introduction Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Walison Nunes da Silva
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Heloísa A S Ferreira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | - Lays Cordeiro Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Eduarda Chen Ferris
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ajay Thatte
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucíola da Silva Barcelos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Frédéric Frézard
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
3
|
Jalloh US, Gsell A, Gultian KA, MacAulay J, Madden A, Smith J, Siri L, Vega SL. Synthesis and Photopatterning of Synthetic Thiol-Norbornene Hydrogels. Gels 2024; 10:164. [PMID: 38534582 DOI: 10.3390/gels10030164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrogels are a class of soft biomaterials and the material of choice for a myriad of biomedical applications due to their biocompatibility and highly tunable mechanical and biochemical properties. Specifically, light-mediated thiol-norbornene click reactions between norbornene-modified macromers and di-thiolated crosslinkers can be used to form base hydrogels amenable to spatial biochemical modifications via subsequent light reactions between pendant norbornenes in the hydrogel network and thiolated peptides. Macromers derived from natural sources (e.g., hyaluronic acid, gelatin, alginate) can cause off-target cell signaling, and this has motivated the use of synthetic macromers such as poly(ethylene glycol) (PEG). In this study, commercially available 8-arm norbornene-modified PEG (PEG-Nor) macromers were reacted with di-thiolated crosslinkers (dithiothreitol, DTT) to form synthetic hydrogels. By varying the PEG-Nor weight percent or DTT concentration, hydrogels with a stiffness range of 3.3 kPa-31.3 kPa were formed. Pendant norbornene groups in these hydrogels were used for secondary reactions to either increase hydrogel stiffness (by reacting with DTT) or to tether mono-thiolated peptides to the hydrogel network. Peptide functionalization has no effect on bulk hydrogel mechanics, and this confirms that mechanical and biochemical signals can be independently controlled. Using photomasks, thiolated peptides can also be photopatterned onto base hydrogels, and mesenchymal stem cells (MSCs) attach and spread on RGD-functionalized PEG-Nor hydrogels. MSCs encapsulated in PEG-Nor hydrogels are also highly viable, demonstrating the ability of this platform to form biocompatible hydrogels for 2D and 3D cell culture with user-defined mechanical and biochemical properties.
Collapse
Affiliation(s)
- Umu S Jalloh
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Arielle Gsell
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Kirstene A Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Abigail Madden
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Jillian Smith
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Luke Siri
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
4
|
Cai JH, Zhu XZ, Guo PY, Rose P, Liu XT, Liu X, Zhu YZ. Recent updates in click and computational chemistry for drug discovery and development. Front Chem 2023; 11:1114970. [PMID: 36825226 PMCID: PMC9941707 DOI: 10.3389/fchem.2023.1114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Drug discovery is a costly and time-consuming process with a very high failure rate. Recently, click chemistry and computer-aided drug design (CADD) represent popular areas for new drug development. Herein, we summarized the recent updates in click and computational chemistry for drug discovery and development including clicking to effectively synthesize druggable candidates, synthesis and modification of natural products, targeted delivery systems, and computer-aided drug discovery for target identification, seeking out and optimizing lead compounds, ADMET prediction as well as compounds synthesis, hopefully, inspires new ideas for novel drug development in the future.
Collapse
Affiliation(s)
- Jiang Hong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xuan Zhe Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Peng Yue Guo
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Peter Rose
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Xiao Tong Liu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military University, Shanghai, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Natural Materials for 3D Printing and Their Applications. Gels 2022; 8:748. [PMID: 36421570 PMCID: PMC9689506 DOI: 10.3390/gels8110748] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2023] Open
Abstract
In recent years, 3D printing has gradually become a well-known new topic and a research hotspot. At the same time, the advent of 3D printing is inseparable from the preparation of bio-ink. Natural materials have the advantages of low toxicity or even non-toxicity, there being abundant raw materials, easy processing and modification, excellent mechanical properties, good biocompatibility, and high cell activity, making them very suitable for the preparation of bio-ink. With the help of 3D printing technology, the prepared materials and scaffolds can be widely used in tissue engineering and other fields. Firstly, we introduce the natural materials and their properties for 3D printing and summarize the physical and chemical properties of these natural materials and their applications in tissue engineering after modification. Secondly, we discuss the modification methods used for 3D printing materials, including physical, chemical, and protein self-assembly methods. We also discuss the method of 3D printing. Then, we summarize the application of natural materials for 3D printing in tissue engineering, skin tissue, cartilage tissue, bone tissue, and vascular tissue. Finally, we also express some views on the research and application of these natural materials.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| |
Collapse
|