1
|
García-Vázquez V, Sesé-Lucio B, Calvo FA, Vaquero JJ, Desco M, Pascau J. Surface scanning for 3D dose calculation in intraoperative electron radiation therapy. Radiat Oncol 2018; 13:243. [PMID: 30526626 PMCID: PMC6286593 DOI: 10.1186/s13014-018-1181-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/12/2018] [Indexed: 02/03/2023] Open
Abstract
Background Dose calculations in intraoperative electron radiation therapy (IOERT) rely on the conventional assumption of water-equivalent tissues at the applicator end, which defines a flat irradiation surface. However, the shape of the irradiation surface modifies the dose distribution. Our study explores, for the first time, the use of surface scanning methods for three-dimensional dose calculation of IOERT. Methods Two different three-dimensional scanning technologies were evaluated in a simulated IOERT scenario: a tracked conoscopic holography sensor (ConoProbe) and a structured-light three-dimensional scanner (Artec). Dose distributions obtained from computed tomography studies of the surgical field (gold standard) were compared with those calculated under the conventional assumption or from pseudo-computed tomography studies based on surfaces. Results In the simulated IOERT scenario, the conventional assumption led to an average gamma pass rate of 39.9% for dose values greater than 10% (two configurations, with and without blood in the surgical field). Results improved when considering surfaces in the dose calculation (88.5% for ConoProbe and 92.9% for Artec). Conclusions More accurate three-dimensional dose distributions were obtained when considering surfaces in the dose calculation of the simulated surgical field. The structured-light three-dimensional scanner provided the best results in terms of dose distributions. The findings obtained in this specific experimental setup warrant further research on surface scanning in the IOERT context owing to the clinical interest of improving the documentation of the actual IOERT scenario.
Collapse
Affiliation(s)
- Verónica García-Vázquez
- Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain.
| | - Begoña Sesé-Lucio
- Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Felipe A Calvo
- Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain.,Departamento de Oncología, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Clínica Universidad de Navarra, Madrid, Spain
| | - Juan J Vaquero
- Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón. Calle Doctor Esquerdo, 46, 28007, Madrid, Spain.,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
2
|
An infrared interactive patient position guidance and acquisition control system for use during radiotherapy treatment. JOURNAL OF RADIOTHERAPY IN PRACTICE 2017. [DOI: 10.1017/s1460396917000140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackgroundThe control of patient position, posture and respiratory movements during radiotherapy is important for effective and specific treatment of malignancy. We have developed an infrared (IR) interactive patient position guidance and acquisition control system for clinical use, comprising IR cameras, IR markers and dedicated software.Materials and methodsWe evaluated the system with ten healthy volunteers and ten experienced operators. IR markers were placed on the body surface. Their positions were calculated using vectors of three translational and three rotational parameters, and the intrafractional error for each marker was acquired with and without respiratory motion. The inclusion of multiple positioning markers allowed for real-time visualisation of the patient posture, with feedback on misalignment and required postural adjustments.ResultsThe positioning time was 73 seconds (with a minimum period of 39 seconds), which was significantly shorter than for conventional line alignment. A comparison of positioning reproducibility between conventional line alignment and this system was <3·5 mm and was not patient dependent or operator dependent. An intrafractional error of displacement of up to 10·0 mm was found in the right iliac crest.ConclusionsThis IR interactive system was shown to be high utility and suitable for monitoring patient position, posture and respiratory movements during radiotherapy.
Collapse
|