1
|
Sharma SK, AlEnizi A, Kumar M, Alfarraj O, Alowaidi M. Detection of real-time deep fakes and face forgery in video conferencing employing generative adversarial networks. Heliyon 2024; 10:e37163. [PMID: 39296212 PMCID: PMC11407936 DOI: 10.1016/j.heliyon.2024.e37163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
As facial modification technology advances rapidly, it poses a challenge to methods used to detect fake faces. The advent of deep learning and AI-based technologies has led to the creation of counterfeit photographs that are more difficult to discern apart from real ones. Existing Deep fake detection systems excel at spotting fake content with low visual quality and are easily recognized by visual artifacts. The study employed a unique active forensic strategy Compact Ensemble-based discriminators architecture using Deep Conditional Generative Adversarial Networks (CED-DCGAN), for identifying real-time deep fakes in video conferencing. DCGAN focuses on video-deep fake detection on features since technologies for creating convincing fakes are improving rapidly. As a first step towards recognizing DCGAN-generated images, split real-time video images into frames containing essential elements and then use that bandwidth to train an ensemble-based discriminator as a classifier. Spectra anomalies are produced by up-sampling processes, standard procedures in GAN systems for making large amounts of fake data films. The Compact Ensemble discriminator (CED) concentrates on the most distinguishing feature between the natural and synthetic images, giving the generators a robust training signal. As empirical results on publicly available datasets show, the suggested algorithms outperform state-of-the-art methods and the proposed CED-DCGAN technique successfully detects high-fidelity deep fakes in video conferencing and generalizes well when comparing with other techniques. Python tool is used for implementing this proposed study and the accuracy obtained for proposed work is 98.23 %.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- Department of Information System, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Abdullah AlEnizi
- Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| | - Manoj Kumar
- School of Computer Science, University of Wollongong in Dubai, Dubai Knowledge Park, Dubai, United Arab Emirates
- MEU Research Unit, Middle East University, Amman, 11831, Jordan
| | - Osama Alfarraj
- Computer Science Department, Community College, King Saud University, Riyadh, 11437, Saudi Arabia
| | - Majed Alowaidi
- Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia
| |
Collapse
|
2
|
Aziz RM, Mahto R, Das A, Ahmed SU, Roy P, Mallik S, Li A. CO-WOA: Novel Optimization Approach for Deep Learning Classification of Fish Image. Chem Biodivers 2023; 20:e202201123. [PMID: 37394680 DOI: 10.1002/cbdv.202201123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
The most significant groupings of cold-blooded creatures are the fish family. It is crucial to recognize and categorize the most significant species of fish since various species of seafood diseases and decay exhibit different symptoms. Systems based on enhanced deep learning can replace the area's currently cumbersome and sluggish traditional approaches. Although it seems straightforward, classifying fish images is a complex procedure. In addition, the scientific study of population distribution and geographic patterns is important for advancing the field's present advancements. The goal of the proposed work is to identify the best performing strategy using cutting-edge computer vision, the Chaotic Oppositional Based Whale Optimization Algorithm (CO-WOA), and data mining techniques. Performance comparisons with leading models, such as Convolutional Neural Networks (CNN) and VGG-19, are made to confirm the applicability of the suggested method. The suggested feature extraction approach with Proposed Deep Learning Model was used in the research, yielding accuracy rates of 100 %. The performance was also compared to cutting-edge image processing models with an accuracy of 98.48 %, 98.58 %, 99.04 %, 98.44 %, 99.18 % and 99.63 % such as Convolutional Neural Networks, ResNet150V2, DenseNet, Visual Geometry Group-19, Inception V3, Xception. Using an empirical method leveraging artificial neural networks, the Proposed Deep Learning model was shown to be the best model.
Collapse
Affiliation(s)
- Rabia Musheer Aziz
- Mathematics division, School of Advanced Sciences and Languages, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Rajul Mahto
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Aryan Das
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Saboor Uddin Ahmed
- School of Computing Science and Engineering, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Priyanka Roy
- Mathematics division, School of Advanced Sciences and Languages, VIT Bhopal University, Kothrikalan, Sehore, 466116, M.P., India
| | - Saurav Mallik
- Molecular and Integrative Physiological Sciences, Department of Environmental health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Aimin Li
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Computer Science and Engineering, Xi'an University of Technology, Shaanxi, 710048, China
| |
Collapse
|
3
|
Pati SK, Gupta MK, Banerjee A, Mallik S, Zhao Z. PPIGCF: A Protein-Protein Interaction-Based Gene Correlation Filter for Optimal Gene Selection. Genes (Basel) 2023; 14:genes14051063. [PMID: 37239423 DOI: 10.3390/genes14051063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Biological data at the omics level are highly complex, requiring powerful computational approaches to identifying significant intrinsic characteristics to further search for informative markers involved in the studied phenotype. In this paper, we propose a novel dimension reduction technique, protein-protein interaction-based gene correlation filtration (PPIGCF), which builds on gene ontology (GO) and protein-protein interaction (PPI) structures to analyze microarray gene expression data. PPIGCF first extracts the gene symbols with their expression from the experimental dataset, and then, classifies them based on GO biological process (BP) and cellular component (CC) annotations. Every classification group inherits all the information on its CCs, corresponding to the BPs, to establish a PPI network. Then, the gene correlation filter (regarding gene rank and the proposed correlation coefficient) is computed on every network and eradicates a few weakly correlated genes connected with their corresponding networks. PPIGCF finds the information content (IC) of the other genes related to the PPI network and takes only the genes with the highest IC values. The satisfactory results of PPIGCF are used to prioritize significant genes. We performed a comparison with current methods to demonstrate our technique's efficiency. From the experiment, it can be concluded that PPIGCF needs fewer genes to reach reasonable accuracy (~99%) for cancer classification. This paper reduces the computational complexity and enhances the time complexity of biomarker discovery from datasets.
Collapse
Affiliation(s)
- Soumen Kumar Pati
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata 741249, West Bengal, India
| | - Manan Kumar Gupta
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, Haringhata 741249, West Bengal, India
| | - Ayan Banerjee
- Department of Computer Science and Engineering, Jalpaiguri Govt. Engineering College, Jalpaiguri 735102, West Bengal, India
| | - Saurav Mallik
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA 02115, USA
- Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Bhandari M, Shahi TB, Neupane A, Walsh KB. BotanicX-AI: Identification of Tomato Leaf Diseases Using an Explanation-Driven Deep-Learning Model. J Imaging 2023; 9:jimaging9020053. [PMID: 36826972 PMCID: PMC9964407 DOI: 10.3390/jimaging9020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
Early and accurate tomato disease detection using easily available leaf photos is essential for farmers and stakeholders as it help reduce yield loss due to possible disease epidemics. This paper aims to visually identify nine different infectious diseases (bacterial spot, early blight, Septoria leaf spot, late blight, leaf mold, two-spotted spider mite, mosaic virus, target spot, and yellow leaf curl virus) in tomato leaves in addition to healthy leaves. We implemented EfficientNetB5 with a tomato leaf disease (TLD) dataset without any segmentation, and the model achieved an average training accuracy of 99.84% ± 0.10%, average validation accuracy of 98.28% ± 0.20%, and average test accuracy of 99.07% ± 0.38% over 10 cross folds.The use of gradient-weighted class activation mapping (GradCAM) and local interpretable model-agnostic explanations are proposed to provide model interpretability, which is essential to predictive performance, helpful in building trust, and required for integration into agricultural practice.
Collapse
Affiliation(s)
- Mohan Bhandari
- Department of Science and Technology, Samriddhi College, Bhaktapur 44800, Nepal
| | - Tej Bahadur Shahi
- School of Engineering and Technology, Central Queensland University, Norman Gardens, Rockhampton 4701, Australia
- Central Department of Computer Science and IT, Tribhuvan University, Kathmandu 44600, Nepal
| | - Arjun Neupane
- School of Engineering and Technology, Central Queensland University, Norman Gardens, Rockhampton 4701, Australia
- Correspondence:
| | - Kerry Brian Walsh
- Institute for Future Farming Systems, Central Queensland University, Rockhampton 4701, Australia
| |
Collapse
|