1
|
Islam MS, Al Farid F, Shamrat FMJM, Islam MN, Rashid M, Bari BS, Abdullah J, Nazrul Islam M, Akhtaruzzaman M, Nomani Kabir M, Mansor S, Abdul Karim H. Challenges issues and future recommendations of deep learning techniques for SARS-CoV-2 detection utilising X-ray and CT images: a comprehensive review. PeerJ Comput Sci 2024; 10:e2517. [PMID: 39896401 PMCID: PMC11784792 DOI: 10.7717/peerj-cs.2517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/24/2024] [Indexed: 02/04/2025]
Abstract
The global spread of SARS-CoV-2 has prompted a crucial need for accurate medical diagnosis, particularly in the respiratory system. Current diagnostic methods heavily rely on imaging techniques like CT scans and X-rays, but identifying SARS-CoV-2 in these images proves to be challenging and time-consuming. In this context, artificial intelligence (AI) models, specifically deep learning (DL) networks, emerge as a promising solution in medical image analysis. This article provides a meticulous and comprehensive review of imaging-based SARS-CoV-2 diagnosis using deep learning techniques up to May 2024. This article starts with an overview of imaging-based SARS-CoV-2 diagnosis, covering the basic steps of deep learning-based SARS-CoV-2 diagnosis, SARS-CoV-2 data sources, data pre-processing methods, the taxonomy of deep learning techniques, findings, research gaps and performance evaluation. We also focus on addressing current privacy issues, limitations, and challenges in the realm of SARS-CoV-2 diagnosis. According to the taxonomy, each deep learning model is discussed, encompassing its core functionality and a critical assessment of its suitability for imaging-based SARS-CoV-2 detection. A comparative analysis is included by summarizing all relevant studies to provide an overall visualization. Considering the challenges of identifying the best deep-learning model for imaging-based SARS-CoV-2 detection, the article conducts an experiment with twelve contemporary deep-learning techniques. The experimental result shows that the MobileNetV3 model outperforms other deep learning models with an accuracy of 98.11%. Finally, the article elaborates on the current challenges in deep learning-based SARS-CoV-2 diagnosis and explores potential future directions and methodological recommendations for research and advancement.
Collapse
Affiliation(s)
- Md Shofiqul Islam
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Warun Ponds, Victoria, Australia
| | - Fahmid Al Farid
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| | | | - Md Nahidul Islam
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
| | - Mamunur Rashid
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
- Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, United States
| | - Bifta Sama Bari
- Faculty of Electrical and Electronics Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Pekan, Pahang, Malaysia
- Electrical and Computer Engineering, Tennessee Tech University, Cookeville, TN, United States
| | - Junaidi Abdullah
- Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Selangor, Malaysia
| | - Muhammad Nazrul Islam
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Md Akhtaruzzaman
- Computer Science and Engineering (CSE), Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
| | - Muhammad Nomani Kabir
- Department of Computer Science & Engineering, United International University (UIU), Dhaka, Bangladesh
| | - Sarina Mansor
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| | - Hezerul Abdul Karim
- Faculty of Engineering, Multimedia University, Cyeberjaya, Selangor, Malaysia
| |
Collapse
|
2
|
Xu Y, Quan R, Xu W, Huang Y, Chen X, Liu F. Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches. Bioengineering (Basel) 2024; 11:1034. [PMID: 39451409 PMCID: PMC11505408 DOI: 10.3390/bioengineering11101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
Collapse
Affiliation(s)
- Yan Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Rixiang Quan
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Weiting Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Yi Huang
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK;
| | - Xiaolong Chen
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Fengyuan Liu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| |
Collapse
|
3
|
Zahari R, Cox J, Obara B. Uncertainty-aware image classification on 3D CT lung. Comput Biol Med 2024; 172:108324. [PMID: 38508053 DOI: 10.1016/j.compbiomed.2024.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Early detection is crucial for lung cancer to prolong the patient's survival. Existing model architectures used in such systems have shown promising results. However, they lack reliability and robustness in their predictions and the models are typically evaluated on a single dataset, making them overconfident when a new class is present. With the existence of uncertainty, uncertain images can be referred to medical experts for a second opinion. Thus, we propose an uncertainty-aware framework that includes three phases: data preprocessing and model selection and evaluation, uncertainty quantification (UQ), and uncertainty measurement and data referral for the classification of benign and malignant nodules using 3D CT images. To quantify the uncertainty, we employed three approaches; Monte Carlo Dropout (MCD), Deep Ensemble (DE), and Ensemble Monte Carlo Dropout (EMCD). We evaluated eight different deep learning models consisting of ResNet, DenseNet, and the Inception network family, all of which achieved average F1 scores above 0.832, and the highest average value of 0.845 was obtained using InceptionResNetV2. Furthermore, incorporating the UQ demonstrated significant improvement in the overall model performance. Upon evaluation of the uncertainty estimate, MCD outperforms the other UQ models except for the metric, URecall, where DE and EMCD excel, implying that they are better at identifying incorrect predictions with higher uncertainty levels, which is vital in the medical field. Finally, we show that using a threshold for data referral can greatly improve the performance further, increasing the accuracy up to 0.959.
Collapse
Affiliation(s)
- Rahimi Zahari
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Cox
- County Durham and Darlington NHS Foundation Trust, County Durham, UK
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|