Karamimanesh M, Abiri E, Shahsavari M, Hassanli K, van Schaik A, Eshraghian J. Spiking neural networks on FPGA: A survey of methodologies and recent advancements.
Neural Netw 2025;
186:107256. [PMID:
39965527 DOI:
10.1016/j.neunet.2025.107256]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
The mimicry of the biological brain's structure in information processing enables spiking neural networks (SNNs) to exhibit significantly reduced power consumption compared to conventional systems. Consequently, these networks have garnered heightened attention and spurred extensive research endeavors in recent years, proposing various structures to achieve low power consumption, high speed, and improved recognition ability. However, researchers are still in the early stages of developing more efficient neural networks that more closely resemble the biological brain. This development and research require suitable hardware for execution with appropriate capabilities, and field-programmable gate array (FPGA) serves as a highly qualified candidate compared to existing hardware such as central processing unit (CPU) and graphics processing unit (GPU). FPGA, with parallel processing capabilities similar to the brain, lower latency and power consumption, and higher throughput, is highly eligible hardware for assisting in the development of spiking neural networks. In this review, an attempt has been made to facilitate researchers' path to further develop this field by collecting and examining recent works and the challenges that hinder the implementation of these networks on FPGA.
Collapse