1
|
Montaño-Silva P, Callejas-Negrete OA, Pereira-Santana A, Verdín J. Cell wall-resident proteins with internal repeats (PIRs) show an inverted architecture in Neurospora crassa, but maintain their role as wall stabilizers. FEBS J 2025; 292:2578-2601. [PMID: 39949035 DOI: 10.1111/febs.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/16/2024] [Accepted: 01/31/2025] [Indexed: 05/25/2025]
Abstract
Proteins with internal repeats (PIRs) are the second most abundant class of fungal cell wall resident proteins. In yeasts, PIRs preserve the stability of the cell wall under stressful conditions. They are characterized by conserved N-terminal amino acid sequences repeated in tandem (PIR motifs), and a cysteine (Cys)-rich C-terminal domain. PIRs have been identified in several filamentous fungi genomes; however, they have not been studied beyond yeasts. In this work, the diversity, evolution, and biological role of PIRs, with a particular focus on a new PIRs class, was addressed. Bioinformatic inference of PIRs in fungi indicated they were an innovation in Ascomycota. Predicted PIRs clustered in two main groups: classical yeasts PIRs (N-terminal PIR motifs; C-terminal Cys-rich domain), and PIRs from filamentous fungi with an inverted architecture (N-terminal Cys-rich domain; C-terminal PIR motifs), which could harbor additional glycosylphosphatidylinositol (GPI) addition-signals. As representatives of the second group, Neurospora crassa (Nc) PIR-1 (NCU04033) and PIR-2 (NCU07569) were studied. Confocal microscopy of eGFP-labeled Nc PIR-1 and Nc PIR-2 revealed they accumulate in apical plugs; additionally, PIR-1 requires the Kex2 processing site for correct maturation and harbors a predicted GPI modification signal. Moreover, Nc Δpir-1 and Δpir-2 single mutants showed a growth rate similar to that of Nc wild-type (WT), but the double mutant Nc Δpir-1/Δpir-2 grew significantly slower. Similarly, Nc Δpir-1 and Nc Δpir-2 were mildly sensitive to calcofluor white, although Nc Δpir-1/Δpir-2 double mutant was severely impaired. Despite the inverted architecture of Nc PIR-1 and Nc PIR-2, they maintain a role as cell wall stabilizers like classical yeast PIRs.
Collapse
Affiliation(s)
- Paul Montaño-Silva
- Biotecnología Industrial, CIATEJ-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Olga A Callejas-Negrete
- Departamento de Microbiología, CICESE-Centro de Investigación Científica y de Educación Superior de Ensenada, Mexico
| | - Alejandro Pereira-Santana
- CONAHCYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Sede Sureste, Mérida, Mexico
| | - Jorge Verdín
- Biotecnología Industrial, CIATEJ-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| |
Collapse
|
2
|
Günal‐Köroğlu D, Karabulut G, Mohammadian F, Can Karaca A, Capanoglu E, Esatbeyoglu T. Production of yeast cell wall polysaccharides-β-glucan and chitin by using food waste substrates: Biosynthesis, production, extraction, and purification methods. Compr Rev Food Sci Food Saf 2025; 24:e70161. [PMID: 40183630 PMCID: PMC11970350 DOI: 10.1111/1541-4337.70161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025]
Abstract
Food waste causes significant environmental and economic challenges worldwide, prompting many nations to prioritize its reduction and recycling. As a nutrient-rich material containing vitamins, proteins, and carbohydrates, it serves as a promising substrate for the cultivation of single-cell microorganisms like yeast. Yeast cell wall polysaccharides (YCWPs), particularly chitin and β-glucans, offer valuable applications in food, pharmaceuticals, and bioprocessing. This review highlights the biosynthesis, production, extraction, and purification of YCWP cultivated on food waste substrates. Key species including Saccharomyces cerevisiae, Pichia pastoris, and Candida spp. are discussed, with a focus on optimizing chitin and β-glucan yield through mechanical, chemical, and enzymatic extraction methods. In addition, the structural and functional properties of β-glucans and chitin in maintaining cell wall stability are explored, emphasizing their potential as prebiotics, dietary fibers, and biodegradable packaging materials. This review also examines the valorization of food waste in yeast cultivation, presenting a sustainable bioprocessing strategy for transforming waste into valuable bioproducts.
Collapse
Affiliation(s)
- Deniz Günal‐Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Gulsah Karabulut
- Department of Food Engineering, Faculty of Food EngineeringSakarya UniversitySakaryaTürkiye
| | - Fariddudin Mohammadian
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One HealthGottfried Wilhelm Leibniz University HannoverHannoverGermany
| | - Aslı Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical EngineeringIstanbul Technical UniversityIstanbulTürkiye
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One HealthGottfried Wilhelm Leibniz University HannoverHannoverGermany
| |
Collapse
|
3
|
Šupljika N, Paić A, Novačić A, Martinić Cezar T, Vallée B, Teparić R, Stuparević I, Žunar B. Saccharomyces cerevisiae Mub1, a substrate adaptor of E3 ubiquitin ligase Ubr2, modulates sensitivity to cell wall stressors through multiple transcription factors. FEBS J 2025. [PMID: 40165610 DOI: 10.1111/febs.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/20/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Yeasts evolved a complex regulatory programme to build and maintain their cell wall, the primary structure through which they interact with their environment. However, how this programme ties to essential cellular processes mostly remains unclear. Here, we focus on Saccharomyces cerevisiae MYND-type zinc finger protein MUB1 (Mub1), an adaptor protein of E3 ubiquitin-protein ligase Ubr2 that was previously associated with regulating proteasome genes through the transcription factor Rpn4. We show that S. cerevisiae cells lacking Mub1 become hyper-tolerant to standard cell wall stressors, outperforming wild-type cells. This protective mub1Δ phenotype stems from the activity of several transcription factors, leading to the inhibition of cell wall remodelling, a typically protective process that becomes maladaptive during chronic cell wall stress in laboratory conditions. Based on these results, we suggest that Mub1 regulates not only Rpn4 but a much broader range of transcription factors, and thus serves as an in-so-far unrecognised regulatory hub directly linking cell wall robustness with the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Nada Šupljika
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Antonia Paić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, Orléans Cedex 2, France
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Igor Stuparević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| |
Collapse
|
4
|
Martinić Cezar T, Paić A, Prekpalaj S, Teparić R, Žunar B, Stuparević I. Measuring the capacity of yeast for surface display of cell wall-anchored protein isoforms by using β-lactamase as a reporter enzyme. FEBS Open Bio 2025; 15:573-579. [PMID: 39198718 PMCID: PMC11961389 DOI: 10.1002/2211-5463.13886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Yeast surface display is a promising biotechnological tool that uses genetically modified yeast cell wall proteins as anchors for enzymes of interest, thereby transforming yeast cell wall into a living catalytic material. Here, we present a comprehensive protocol for quantifying surface-displayed β-lactamase on the cell wall of model yeast Saccharomyces cerevisiae. We use β-lactamase as a reporter enzyme, which we tagged to be anchored to the cell wall closer to its N or C terminus, through the portion of the Pir2 or Ccw12 cell wall proteins, respectively. The catalytic activity of surface-displayed β-lactamase is assessed by its ability to hydrolyze nitrocefin, which produces a colorimetric change that is quantitatively measured by spectrophotometric analysis at 482 nm. This system enables precise quantification of the potential of S. cerevisiae strains for surface display, continuous real-time monitoring of enzyme activity, and facilitates the study of enzyme kinetics and interactions with inhibitors within the cell's native environment. In addition, the system provides a platform for high-throughput screening of potential β-lactamase inhibitors and can be adapted for the visualization of other enzymes, making it a versatile tool for drug discovery and bioprocess development.
Collapse
Affiliation(s)
- Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebCroatia
| | - Antonia Paić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebCroatia
| | - Stefani Prekpalaj
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebCroatia
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebCroatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebCroatia
| | - Igor Stuparević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and BiotechnologyUniversity of ZagrebCroatia
| |
Collapse
|
5
|
Martinić Cezar T, Marđetko N, Trontel A, Paić A, Slavica A, Teparić R, Žunar B. Engineering Saccharomyces cerevisiae for the production of natural osmolyte glucosyl glycerol from sucrose and glycerol through Ccw12-based surface display of sucrose phosphorylase. J Biol Eng 2024; 18:69. [PMID: 39578895 PMCID: PMC11583750 DOI: 10.1186/s13036-024-00468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Yeast Saccharomyces cerevisiae is widely recognised as a versatile chassis for constructing microbial cell factories. However, producing chemicals from toxic, highly concentrated, or cell-impermeable substrates, or chemicals dependent on enzymatic reactions incompatible with the yeast's intracellular environment, remains challenging. One such chemical is 2-O-(α-D-glucopyranosyl)-sn-glycerol (glucosyl glycerol, αGG), a natural osmolyte used in the cosmetics and healthcare industries. This compound can be synthesised in a one-enzyme reaction from sucrose and glycerol by Leuconostoc mesenteroides sucrose phosphorylase (SucP), an enzyme which, in a low-water, glycerol-rich, phosphate-free environment, transfers the glucosyl moiety from sucrose to glycerol. RESULTS In this study, we engineered a yeast microbial cell factory for αGG production. For this purpose, we first focused on the abundant yeast GPI-anchored cell wall protein Ccw12 and used our insights to develop a miniature Ccw12-tag, which adds only 1.1 kDa to the enzyme of interest while enabling its covalent attachment to the cell wall. Next, we Ccw12-tagged SucP and expressed it in an invertase-negative strain of yeast S. cerevisiae from the PHO5 promoter, i.e., promoter strongly induced under phosphate-free conditions. Such SucP isoform, covalently C-terminally anchored to the outer cell surface, produced extracellularly 37.3 g l- 1 (146 mM) of αGG in five days, while the underlying chassis metabolised reaction by-products, thereby simplifying downstream processing. CONCLUSIONS The here-described S. cerevisiae strain, displaying C-terminally anchored sucrose phosphorylase on its cell surface, is the first eukaryotic microbial cell factory capable of a one-step αGG production from the readily available substrates sucrose and glycerol.
Collapse
Affiliation(s)
- Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Nenad Marđetko
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Antonija Trontel
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Antonia Paić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Anita Slavica
- Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing Technology, Department of Biochemical Engineering, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, University of Zagreb Faculty of Food Technology and Biotechnology, Pierottijeva 6, Zagreb, 10000, Croatia.
| |
Collapse
|
6
|
Trivellin C, Torello Pianale L, Olsson L. Robustness quantification of a mutant library screen revealed key genetic markers in yeast. Microb Cell Fact 2024; 23:218. [PMID: 39098937 PMCID: PMC11298085 DOI: 10.1186/s12934-024-02490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Microbial robustness is crucial for developing cell factories that maintain consistent performance in a challenging environment such as large-scale bioreactors. Although tools exist to assess and understand robustness at a phenotypic level, the underlying metabolic and genetic mechanisms are not well defined, which limits our ability to engineer more strains with robust functions. RESULTS This study encompassed four steps. (I) Fitness and robustness were analyzed from a published dataset of yeast mutants grown in multiple environments. (II) Genes and metabolic processes affecting robustness or fitness were identified, and 14 of these genes were deleted in Saccharomyces cerevisiae CEN.PK113-7D. (III) The mutants bearing gene deletions were cultivated in three perturbation spaces mimicking typical industrial processes. (IV) Fitness and robustness were determined for each mutant in each perturbation space. We report that robustness varied according to the perturbation space. We identified genes associated with increased robustness such as MET28, linked to sulfur metabolism; as well as genes associated with decreased robustness, including TIR3 and WWM1, both involved in stress response and apoptosis. CONCLUSION The present study demonstrates how phenomics datasets can be analyzed to reveal the relationship between phenotypic response and associated genes. Specifically, robustness analysis makes it possible to study the influence of single genes and metabolic processes on stable microbial performance in different perturbation spaces. Ultimately, this information can be used to enhance robustness in targeted strains.
Collapse
Affiliation(s)
- Cecilia Trivellin
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Luca Torello Pianale
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
7
|
Komath SS. To each its own: Mechanisms of cross-talk between GPI biosynthesis and cAMP-PKA signaling in Candida albicans versus Saccharomyces cerevisiae. J Biol Chem 2024; 300:107444. [PMID: 38838772 PMCID: PMC11294708 DOI: 10.1016/j.jbc.2024.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.
Collapse
|
8
|
Pinto J, Tavakolian N, Li CB, Stelkens R. The relationship between cell density and cell count differs among Saccharomyces yeast species. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001215. [PMID: 38863984 PMCID: PMC11165304 DOI: 10.17912/micropub.biology.001215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
There is a recent push to develop wild and non-domesticated Saccharomyces yeast strains into useful model systems for research in ecology and evolution. Yet, the variation between species and strains in important population parameters remains largely undescribed. Here, we investigated the relationship between two commonly used measures in microbiology to estimate growth rate - cell density and cell count - in 23 strains across all eight Saccharomyces species . We found that the slope of this relationship significantly differs among species and a given optical density (OD) does not translate into the same number of cells across species. We provide a cell number calculator based on our OD measurements for each strain used in this study. Surprisingly, we found a slightly positive relationship between cell size and the slope of the cell density-cell count relationship. Our results show that the strain- and species-specificity of the cell density and cell count relationship should be taken into account, for instance when running competition experiments requiring equal starting population sizes or when estimating the fitness of strains with different genetic backgrounds in experimental evolution studies.
Collapse
Affiliation(s)
- Javier Pinto
- Zoology Department, Stockholm University, Stockholm, Sweden
| | - Nik Tavakolian
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Chun-Biu Li
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Rike Stelkens
- Zoology Department, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Civa V, Chinnici F, Picariello G, Tarabusi E, Bosaro M, Mannazzu I, Domizio P. Non- Saccharomyces yeast derivatives: Characterization of novel potential bio-adjuvants for the winemaking process. Curr Res Food Sci 2024; 8:100774. [PMID: 38846017 PMCID: PMC11153934 DOI: 10.1016/j.crfs.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Winemakers have access to a diverse range of commercially available Inactivated Dry Yeast Based products (IDYB) from various companies and brand names. Among these, thermally inactivated dried yeasts (TIYs) are utilized as yeast nutrients during alcoholic fermentation, aiding in the rehydration of active dry yeasts and reducing ochratoxin A levels during wine maturation and clarification. While IDYB products are generally derived from Saccharomyces spp., this study investigates into the biodiversity of those deriving from non-Saccharomyces for potential applications in winemaking. For that S. cerevisiae and non-Saccharomyces TIYs were produced, characterized for nitrogen and lipid content using FT-NIR spectroscopy, and applied in a wine-like solution (WLS) for analyzing and quantifying released soluble compounds. The impact of TIYs on oxygen consumption was also assessed. Non-Saccharomyces TIYs exhibited significant diversity in terms of cell lipid composition, and amount, composition, and molecular weight of polysaccharides. Compared to that of S. cerevisiae, non-Saccharomyces TIYs released notably higher protein amounts and nHPLC-MS/MS-based shotgun proteomics highlighted the release of cytosolic proteins, as expected due to cell disruption during inactivation, along with the presence of high molecular weight cell wall mannoproteins. Evaluation of antioxidant activity and oxygen consumption demonstrated significant differences among TIYs, as well as variations in GSH and thiol contents. The Principal Component Analysis (PCA) results suggest that oxygen consumption is more closely linked to the lipid fraction rather than the glutathione (GSH) content in the TIYs. Overall, these findings imply that the observed biodiversity of TIYs could have a significant impact on achieving specific oenological objectives.
Collapse
Affiliation(s)
- Valentina Civa
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | - Fabio Chinnici
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | - Gianluca Picariello
- Istituto di Scienze dell’Alimentazione - CNR, Via Roma 52 A/C, I-83100, Avellino, Italy
| | - Emma Tarabusi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| | - Matteo Bosaro
- Italiana Biotecnologie, Via Vigazzolo 112, 36054, Montebello Vicentino, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Paola Domizio
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Italy
| |
Collapse
|
10
|
Efremenko E, Aslanli A, Domnin M, Stepanov N, Senko O. Enzymes with Lactonase Activity against Fungal Quorum Molecules as Effective Antifungals. Biomolecules 2024; 14:383. [PMID: 38540801 PMCID: PMC10968368 DOI: 10.3390/biom14030383] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 11/11/2024] Open
Abstract
Since the growing number of fungi resistant to the fungicides used is becoming a serious threat to human health, animals, and crops, there is a need to find other effective approaches in the eco-friendly suppression of fungal growth. One of the main mechanisms of the development of resistance in fungi, as well as in bacteria, to antimicrobial agents is quorum sensing (QS), in which various lactone-containing compounds participate as signaling molecules. This work aimed to study the effectiveness of action of enzymes exhibiting lactonase activity against fungal signaling molecules. For this, the molecular docking method was used to estimate the interactions between these enzymes and different lactone-containing QS molecules of fungi. The catalytic characteristics of enzymes such as lactonase AiiA, metallo-β-lactamase NDM-1, and organophosphate hydrolase His6-OPH, selected for wet experiments based on the results of computational modeling, were investigated. QS lactone-containing molecules (butyrolactone I and γ-heptalactone) were involved in the experiments as substrates. Further, the antifungal activity of the enzymes was evaluated against various fungal and yeast cells using bioluminescent ATP-metry. The efficient hydrolysis of γ-heptalactone by all three enzymes and butyrolactone I by His6-OPH was demonstrated for the first time. The high antifungal efficacy of action of AiiA and NDM-1 against most of the tested fungal cells was revealed.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | |
Collapse
|
11
|
Kalebina TS, Rekstina VV, Pogarskaia EE, Kulakovskaya T. Importance of Non-Covalent Interactions in Yeast Cell Wall Molecular Organization. Int J Mol Sci 2024; 25:2496. [PMID: 38473742 DOI: 10.3390/ijms25052496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This review covers a group of non-covalently associated molecules, particularly proteins (NCAp), incorporated in the yeast cell wall (CW) with neither disulfide bridges with proteins covalently attached to polysaccharides nor other covalent bonds. Most NCAp, particularly Bgl2, are polysaccharide-remodeling enzymes. Either directly contacting their substrate or appearing as CW lipid-associated molecules, such as in vesicles, they represent the most movable enzymes and may play a central role in CW biogenesis. The absence of the covalent anchoring of NCAp allows them to be there where and when it is necessary. Another group of non-covalently attached to CW molecules are polyphosphates (polyP), the universal regulators of the activity of many enzymes. These anionic polymers are able to form complexes with metal ions and increase the diversity of non-covalent interactions through charged functional groups with both proteins and polysaccharides. The mechanism of regulation of polysaccharide-remodeling enzyme activity in the CW is unknown. We hypothesize that polyP content in the CW is regulated by another NCAp of the CW-acid phosphatase-which, along with post-translational modifications, may thus affect the activity, conformation and compartmentalization of Bgl2 and, possibly, some other polysaccharide-remodeling enzymes.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta E Pogarskaia
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Tatiana Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino 142290, Russia
| |
Collapse
|
12
|
Silva-Sousa F, Oliveira B, Franco-Duarte R, Camarasa C, João Sousa M. Bridging the gap: linking Torulaspora delbrueckii genotypes to fermentation phenotypes and wine aroma. FEMS Yeast Res 2024; 24:foae034. [PMID: 39509285 PMCID: PMC11600337 DOI: 10.1093/femsyr/foae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
Climate change and consumer preferences are driving innovation in winemaking, with a growing interest in non-Saccharomyces species. Among these, Torulaspora delbrueckii (Td) has gained recognition for its ability to reduce volatile acidity and enhance aromatic complexity in wine. However, knowledge regarding its phenotypic and genomic diversity impacting alcoholic fermentation remains limited. Aiming to elucidate the metabolic differences between Td and Saccharomyces cerevisiae (Sc) and the Td intraspecies diversity, we conducted a comprehensive metabolic characterization of 15 Td strains. This analysis delved beyond standard fermentation parameters (kinetics and major metabolites production) to explore non-conventional aromas and establish genotype-phenotype links. Our findings confirmed that most Td strains produce less acetic acid and more succinate and glycerol than Sc. The overall aromatic profiles of Td strains differed from Sc, exhibiting higher levels of monoterpenes and higher alcohols, while producing less acetate esters, fatty acids, their corresponding ethyl esters, and lactones. Moreover, we identified the absence of genes responsible for specific aroma profiles, such as decreased ethyl esters production, as well as the absence of cell wall genes, which might negatively affect Td performance when compared to Sc. This work highlights the significant diversity within Td and underscores potential links between its genotype and phenotype.
Collapse
Affiliation(s)
- Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Bruna Oliveira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Carole Camarasa
- UMR SPO, Université de Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Liao L, Huang H, Wang Y, Du G, Kang Z. Yeast surface display of leech hyaluronidase for the industrial production of hyaluronic acid oligosaccharides. ENGINEERING MICROBIOLOGY 2023; 3:100086. [PMID: 39628912 PMCID: PMC11610956 DOI: 10.1016/j.engmic.2023.100086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 12/06/2024]
Abstract
Leech hyaluronidase (LHyal) is a hyperactive hyaluronic acid (HA) hydrolase that belongs to the hyaluronoglucuronidase family. Traditionally, LHyal is extracted from the heads of leeches, but the recent development of the Pichia pastoris recombinant LHyal expression method permitted the industrial production of size-specific HA oligosaccharides. However, at present LHyal expressed by recombinant yeast strains requires laborious protein purification steps. Moreover, the enzyme is deactivated and removed after single use. To solve this problem, we developed a recyclable LHyal biocatalyst using a yeast surface display (YSD) system. After screening and characterization, we found that the cell wall protein Sed1p displayed stronger anchoring to the P. pastoris cell wall than other cell wall proteins. By optimizing the type and length of the linkers between LHyal and Sed1p, we increased the activity of enzymes displayed on the P. pastoris cell wall by 50.34% in flask cultures. LHyal-(GGGS)6-Sed1p activity further increased to 3.58 × 105 U mL-1 in fed-batch cultivation in a 5 L bioreactor. Enzymatic property analysis results revealed that the displayed LHyal-(GGGS)6-Sed1p generated the same oligosaccharides but exhibited higher thermal stability than free LHyal enzyme. Moreover, displayed LHyal-(GGGS)6-Sed1p could be recovered easily from HA hydrolysis solutions via low-speed centrifugation and could be reused at least 5 times. YSD of LHyal not only increased the utilization efficiency of the enzyme but also simplified the purification process for HA oligosaccharides. Thus, this study provides an alternative approach for the industrial preparation of LHyal and HA oligosaccharides.
Collapse
Affiliation(s)
- Lizhi Liao
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hao Huang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Schiavone M, François JM, Zerbib D, Capp JP. Emerging relevance of cell wall components from non-conventional yeasts as functional ingredients for the food and feed industry. Curr Res Food Sci 2023; 7:100603. [PMID: 37840697 PMCID: PMC10568300 DOI: 10.1016/j.crfs.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Non-conventional yeast species, or non-Saccharomyces yeasts, are increasingly recognized for their involvement in fermented foods. Many of them exhibit probiotic characteristics that are mainly due to direct contacts with other cell types through various molecular components of their cell wall. The biochemical composition and/or the molecular structure of the cell wall components are currently considered the primary determinant of their probiotic properties. Here we first present the techniques that are used to extract and analyze the cell wall components of food industry-related non-Saccharomyces yeasts. We then review the current understanding of the cell wall composition and structure of each polysaccharide from these yeasts. Finally, the data exploring the potential beneficial role of their cell wall components, which could be a source of innovative functional ingredients, are discussed. Such research would allow the development of high value-added products and provide the food industry with novel inputs beyond the well-established S. cerevisiae.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Lallemand SAS, Blagnac, France
| | - Jean M. François
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Toulouse White Biotechnology (TWB), UMS INRAE/INSA/CNRS, Toulouse, France
| | - Didier Zerbib
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
15
|
Martinić Cezar T, Lozančić M, Novačić A, Matičević A, Matijević D, Vallée B, Mrša V, Teparić R, Žunar B. Streamlining N-terminally anchored yeast surface display via structural insights into S. cerevisiae Pir proteins. Microb Cell Fact 2023; 22:174. [PMID: 37679759 PMCID: PMC10483737 DOI: 10.1186/s12934-023-02183-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Surface display co-opts yeast's innate ability to embellish its cell wall with mannoproteins, thus converting the yeast's outer surface into a growing and self-sustaining catalyst. However, the efficient toolbox for converting the enzyme of interest into its surface-displayed isoform is currently lacking, especially if the isoform needs to be anchored to the cell wall near the isoform's N-terminus, e.g., through a short GPI-independent protein anchor. Aiming to advance such N-terminally anchored surface display, we employed in silico and machine-learning strategies to study the 3D structure, function, genomic organisation, and evolution of the Pir protein family, whose members evolved to covalently attach themselves near their N-terminus to the β-1,3-glucan of the cell wall. Through the newly-gained insights, we rationally engineered 14 S. cerevisiae Hsp150 (Pir2)-based fusion proteins. We quantified their performance, uncovering guidelines for efficient yeast surface display while developing a construct that promoted a 2.5-fold more efficient display of a reporter protein than the full-length Hsp150. Moreover, we developed a Pir-tag, i.e., a peptide spanning only 4.5 kDa but promoting as efficient surface display of a reporter protein as the full-length Hsp150. These constructs fortify the existing surface display toolbox, allowing for a prompt and routine refitting of intracellular proteins into their N-terminally anchored isoforms.
Collapse
Affiliation(s)
- Tea Martinić Cezar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Mateja Lozančić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Novačić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Ana Matičević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Dominik Matijević
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire (CBM), CNRS, University of Orléans and INSERM, Orléans Cedex 2, UPR, 4301, 45071, France
| | - Vladimir Mrša
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Renata Teparić
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, 10000, Croatia.
| |
Collapse
|
16
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
17
|
Yang X, Bai S, Wu J, Fan Y, Zou Y, Xia Z, Ao J, Chen T, Zhang M, Yang R. Antifungal Activity and Potential Action Mechanism of Allicin against Trichosporon asahii. Microbiol Spectr 2023; 11:e0090723. [PMID: 37199655 PMCID: PMC10269704 DOI: 10.1128/spectrum.00907-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Trichosporon asahii is an emerging opportunistic pathogen that causes potentially fatal disseminated trichosporonosis. The global prevalence of coronavirus disease 2019 (COVID-19) poses an increasing fungal infection burden caused by T. asahii. Allicin is the main biologically active component with broad-spectrum antimicrobial activity in garlic. In this study, we performed an in-depth analysis of the antifungal characteristics of allicin against T. asahii based on physiological, cytological, and transcriptomic assessments. In vitro, allicin inhibited the growth of T. asahii planktonic cells and biofilm cells significantly. In vivo, allicin improved the mean survival time of mice with systemic trichosporonosis and reduced tissue fungal burden. Electron microscopy observations clearly demonstrated damage to T. asahii cell morphology and ultrastructure caused by allicin. Furthermore, allicin increased intracellular reactive oxygen species (ROS) accumulation, leading to oxidative stress damage in T. asahii cells. Transcriptome analysis showed that allicin treatment disturbed the biosynthesis of cell membrane and cell wall, glucose catabolism, and oxidative stress. The overexpression of multiple antioxidant enzymes and transporters may also place an additional burden on cells, causing them to collapse. Our findings shed new light on the potential of allicin as an alternative treatment strategy for trichosporonosis. IMPORTANCE Systemic infection caused by T. asahii has recently been recognized as an important cause of mortality in hospitalized COVID-19 patients. Invasive trichosporonosis remains a significant challenge for clinicians, due to the limited therapeutic options. The present work suggests that allicin holds great potential as a therapeutic candidate for T. asahii infection. Allicin demonstrated potent in vitro antifungal activity and potential in vivo protective effects. In addition, transcriptome sequencing provided valuable insights into the antifungal effects of allicin.
Collapse
Affiliation(s)
- Xin Yang
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Shuang Bai
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jiamin Wu
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yunlong Fan
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yuekun Zou
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhikuan Xia
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Junhong Ao
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Tong Chen
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Mingwang Zhang
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
- Department of Dermatology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rongya Yang
- Department of Dermatology, Yanbian University Hospital, Yanji, China
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Žunar B, Ito T, Mosrin C, Sugahara Y, Bénédetti H, Guégan R, Vallée B. Confocal imaging of biomarkers at a single-cell resolution: quantifying 'living' in 3D-printable engineered living material based on Pluronic F-127 and yeast Saccharomyces cerevisiae. Biomater Res 2022; 26:85. [PMID: 36539854 PMCID: PMC9769040 DOI: 10.1186/s40824-022-00337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Engineered living materials (ELMs) combine living cells with non-living scaffolds to obtain life-like characteristics, such as biosensing, growth, and self-repair. Some ELMs can be 3D-printed and are called bioinks, and their scaffolds are mostly hydrogel-based. One such scaffold is polymer Pluronic F127, a liquid at 4 °C but a biocompatible hydrogel at room temperature. In such thermally-reversible hydrogel, the microorganism-hydrogel interactions remain uncharacterized, making truly durable 3D-bioprinted ELMs elusive. METHODS We demonstrate the methodology to assess cell-scaffold interactions by characterizing intact alive yeast cells in cross-linked F127-based hydrogels, using genetically encoded ratiometric biosensors to measure intracellular ATP and cytosolic pH at a single-cell level through confocal imaging. RESULTS When embedded in hydrogel, cells were ATP-rich, in exponential or stationary phase, and assembled into microcolonies, which sometimes merged into larger superstructures. The hydrogels supported (micro)aerobic conditions and induced a nutrient gradient that limited microcolony size. External compounds could diffuse at least 2.7 mm into the hydrogels, although for optimal yeast growth bioprinted structures should be thinner than 0.6 mm. Moreover, the hydrogels could carry whole-cell copper biosensors, shielding them from contaminations and providing them with nutrients. CONCLUSIONS F127-based hydrogels are promising scaffolds for 3D-bioprinted ELMs, supporting a heterogeneous cell population primarily shaped by nutrient availability.
Collapse
Affiliation(s)
- Bojan Žunar
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France
- Department of Chemistry and Biochemistry, Laboratory for Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000, Zagreb, Croatia
| | - Taiga Ito
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Christine Mosrin
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France
| | - Régis Guégan
- Global Center for Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
- Institut des Sciences de la Terre d'Orléans (ISTO), UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans, Cedex 2, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire (CBM), CNRS, UPR 4301, University of Orléans and INSERM, 45071, Orléans, Cedex 2, France.
| |
Collapse
|
19
|
Zou G, Ren J, Wu D, Zhang H, Gong M, Li W, Zhang J, Yang Y. Characterization and Heterologous Expression of UDP-Glucose 4-Epimerase From a Hericium erinaceus Mutant with High Polysaccharide Production. Front Bioeng Biotechnol 2021; 9:796278. [PMID: 34900974 PMCID: PMC8655778 DOI: 10.3389/fbioe.2021.796278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/03/2021] [Indexed: 02/02/2023] Open
Abstract
Hericium erinaceus is an important medicinal fungus in traditional Chinese medicine because of its polysaccharides and other natural products. Compared terpenoids and polyketides, the analysis of synthetic pathway of polysaccharides is more difficult because of the many genes involved in central metabolism. In previous studies, A6180, encoding a putative UDP-glucose 4-epimerase (UGE) in an H. erinaceus mutant with high production of active polysaccharides, was significantly upregulated. Since there is no reliable genetic manipulation technology for H. erinaceus, we employed Escherichia coli and Saccharomyces cerevisiae to study the function and activity of A6180. The recombinant overexpression vector pET22b-A6180 was constructed for heterologous expression in E. coli. The enzymatic properties of the recombinant protein were investigated. It showed that the recombinant A6180 could strongly convert UDP-α-D-glucose into UDP-α-D-galactose under optimal conditions (pH 6.0, 30°C). In addition, when A6180 was introduced into S. cerevisiae BY4742, xylose was detected in the polysaccharide composition of the yeast transformant. This suggested that the protein coded by A6180 might be a multifunctional enzyme. The generated polysaccharides with a new composition of sugars showed enhanced macrophage activity in vitro. These results indicate that A6180 plays an important role in the structure and activity of polysaccharides. It is a promising strategy for producing polysaccharides with higher activity by introducing A6180 into polysaccharide-producing mushrooms.
Collapse
Affiliation(s)
- Gen Zou
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Juanbao Ren
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Di Wu
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Henan Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen Li
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jingsong Zhang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
20
|
Caridi A. Selection of Calabrian strains of Saccharomyces sensu stricto for red wines. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Phenolic compounds provide important quality attributes to red wines interacting with the organoleptic impact of wines. Yeast mannoproteins can interact with grape phenolic compounds, responsible for colour and antioxidant activity of wines. The aim of this work was to perform oenological characterisation and specific selection of Calabrian strains of Saccharomyces sensu stricto. Among the considered traits, the aptitude of the yeast to preserve grape pigments and colour intensity was included. Among the best six yeast strains – Sc2731, Sc2742, Sc2756, Sc2773, Sc2774, and Sc2823 – strain Sc2742 exhibits the highest Folin–Ciocalteu index and strain Sc2774 the highest colour intensity. These two selected yeasts may be used as starter for the production of red wines in order to preserve grape pigments and colour intensity.
Collapse
Affiliation(s)
- A. Caridi
- Department of Agriculture, Mediterranea University of Reggio Calabria, Via Feo di Vito s/n, I-89122 Reggio Calabria, Italy
| |
Collapse
|
21
|
Kong M, Li X, Li T, Zhao X, Jin M, Zhou X, Gu H, Mrša V, Xiao W, Cao L. Overexpressing CCW12 in Saccharomyces cerevisiae enables highly efficient ethanol production from lignocellulose hydrolysates. BIORESOURCE TECHNOLOGY 2021; 337:125487. [PMID: 34320766 DOI: 10.1016/j.biortech.2021.125487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A Saccharomyces cerevisiae strain CCW12OE was constructed by overexpressing CCW12 in a previously reported strain WXY70 harboring six xylose utilization genes. CCW12OE produced an optimal ethanol yield of 98.8% theoretical value within 48 h in a simulated corn stover hydrolysate. CCW12OEwas comprehensively evaluated for ethanol production in Miscanthus, maize and corncob hydrolysates, among which a 96.1% theoretical value was achieved within 12 h in corncob hydrolysates. Under normal growth conditions, CCW12OE did not display altered cell morphology; however, in the presence of acetate, CCW12OE maintained relatively intact cell structure and increased cell wall thickness by nearly 50%, while WXY70 had abnormal cell morphology and reduced cell wall thickness by nearly 50%. Besides, CCW12OE had higher fermentation capacity than that of WXY70 in undetoxified and detoxified hydrolysates with both aerobic and anaerobic conditions, demonstrating that CCW12 overexpression alone exhibits improved stress resistance and better fermentation performance.
Collapse
Affiliation(s)
- Meilin Kong
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xiaowei Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Tongtong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xuebing Zhao
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hanqi Gu
- Department of Biology and Food Science, Hebei Normal University for Nationalities, Chengde, Hebei 067000, China
| | - Vladimir Mrša
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Limin Cao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|