2
|
Herculano RD, Dos Reis CE, de Souza SMB, Pegorin Brasil GS, Scontri M, Kawakita S, Carvalho BG, Bebber CC, Su Y, de Sousa Abreu AP, Mecwan MM, Mandal K, Fusco Almeida AM, Mendes Giannini MJS, Guerra NB, Mussagy CU, Bosculo MRM, Gemeinder JLP, de Almeida BFM, Floriano JF, Farhadi N, Monirizad M, Khorsandi D, Nguyen HT, Gomez A, Tirpáková Z, Peirsman A, da Silva Sasaki JC, He S, Forster S, Burd BS, Dokmeci MR, Terra-Garcia M, Junqueira JC, de Mendonça RJ, Cardoso MR, Dos Santos LS, Silva GR, Barros NR, Jucaud V, Li B. Amphotericin B-loaded natural latex dressing for treating Candida albicans wound infections using Galleria mellonella model. J Control Release 2024; 365:744-758. [PMID: 38072085 DOI: 10.1016/j.jconrel.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| | - Camila Eugênia Dos Reis
- Fundação Educacional do Município de Assis (FEMA), 1200 Getulio Vargas Avenue, 19807-130 Assis, SP, Brazil
| | | | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bruna Gregatti Carvalho
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Campinas (UNICAMP), Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, 13083-852 Campinas, SP, Brazil
| | - Camila Calderan Bebber
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Ana Paula de Sousa Abreu
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Marvin M Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Ana Marisa Fusco Almeida
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Maria José Soares Mendes Giannini
- São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | | | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | - Maria Rachel Melo Bosculo
- University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | - José Lúcio Pádua Gemeinder
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; University Center of the Integrated Faculties of Ourinhos (UNIFIO), Km 338, BR-153, 19909-100 Ourinhos, SP, Brazil
| | | | - Juliana Ferreira Floriano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil; São Paulo State University (UNESP), School of Sciences, 17033-360 Bauru, SP, Brazil
| | - Neda Farhadi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Zuzana Tirpáková
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Plastic, Reconstructive and Aesthetic Surgery, University Hospital Ghent, Ghent, Belgium
| | - Josana Carla da Silva Sasaki
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Siqi He
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Samuel Forster
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA
| | - Betina Sayeg Burd
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, 14800-903 Araraquara, SP, Brazil
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Maíra Terra-Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), 12244-514 São José dos Campos, SP, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| | - Marcos Roberto Cardoso
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13561-970 São Carlos, SP, Brazil
| | - Lindomar Soares Dos Santos
- Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14, 040-901 Ribeirão Preto, SP, Brazil
| | - Gláucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010, Formiga, MG, Brazil
| | - Natan Roberto Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA
| | - Bingbing Li
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA, USA; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA.
| |
Collapse
|
3
|
Marcelino HR, Solgadi A, Chéron M, do Egito EST, Ponchel G. Exploring the permeability of Amphotericin B trough serum albumin dispersions and lipid nanocarriers for oral delivery. Int J Pharm 2023; 646:123444. [PMID: 37757958 DOI: 10.1016/j.ijpharm.2023.123444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Amphotericin B (AmB) is a potent polyenic antifungal agent with leishmanicidal activity. Due to its low solubility and permeability in the gastrointestinal tract, AmB is usually administered intravenously. In this context, various approaches have been used to try to improve these properties. Some of the systems developed have shown proven successful, but there is still a lack of knowledge about the pathways AmB takes after oral administration. Therefore, the aim of this work was not only to obtain aqueous dispersions containing AmB at different aggregation states, but also to entrap this molecule in nanocarriers, and evaluate the influence of these conditions on the jejunal permeability of AmB. To observe the aggregation states of AmB, physicochemical characterization of AmB-albumin complexes and AmB-loaded formulations was performed. Different degrees of AmB aggregation states were obtained. Thus, permeability tests were performed in the Ussing chamber and a decrease in AmB concentration in the donor compartment was observed. Electrophysiological measurements showed different responses depending on the AmB formulation. In conclusion, although control of the AmB aggregation state was observed by physicochemical characterization, this approach does not seem to have a sufficient effect on AmB permeability, but on its toxicity. For a complete understanding of AmB-loaded nanocarriers, other pathways, such as lymphatic absorption, should also be investigated.
Collapse
Affiliation(s)
- Henrique Rodrigues Marcelino
- Graduate Program in Health Sciences (PPgCSa), Federal University of Rio Grande do Norte, Natal/RN 59012-570, Brazil; Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, Orsay 91190, France; College of Pharmacy, Federal University of Bahia, Salvador/BA 40170-115, Brazil (Recent affiliation)
| | - Audrey Solgadi
- SFR IPSIT (Paris-Saclay Institute of Therapeutic Innovation), University Paris-Saclay, Orsay 91190, France
| | - Monique Chéron
- College of Pharmacy, University Paris-Saclay, Orsay 91190, France
| | | | - Gilles Ponchel
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, Orsay 91190, France; College of Pharmacy, University Paris-Saclay, Orsay 91190, France
| |
Collapse
|
4
|
Boudier A, Mammari N, Lamouroux E, Duval RE. Inorganic Nanoparticles: Tools to Emphasize the Janus Face of Amphotericin B. Antibiotics (Basel) 2023; 12:1543. [PMID: 37887244 PMCID: PMC10604816 DOI: 10.3390/antibiotics12101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Amphotericin B is the oldest antifungal molecule which is still currently widely used in clinical practice, in particular for the treatment of invasive diseases, even though it is not devoid of side effects (particularly nephrotoxicity). Recently, its redox properties (i.e., both prooxidant and antioxidant) have been highlighted in the literature as mechanisms involved in both its activity and its toxicity. Interestingly, similar properties can be described for inorganic nanoparticles. In the first part of the present review, the redox properties of Amphotericin B and inorganic nanoparticles are discussed. Then, in the second part, inorganic nanoparticles as carriers of the drug are described. A special emphasis is given to their combined redox properties acting either as a prooxidant or as an antioxidant and their connection to the activity against pathogens (i.e., fungi, parasites, and yeasts) and to their toxicity. In a majority of the published studies, inorganic nanoparticles carrying Amphotericin B are described as having a synergistic activity directly related to the rupture of the redox homeostasis of the pathogen. Due to the unique properties of inorganic nanoparticles (e.g., magnetism, intrinsic anti-infectious properties, stimuli-triggered responses, etc.), these nanomaterials may represent a new generation of medicine that can synergistically enhance the antimicrobial properties of Amphotericin B.
Collapse
Affiliation(s)
| | - Nour Mammari
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
| | - Emmanuel Lamouroux
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, LCM, F-54000 Nancy, France; (N.M.); (E.L.)
- ABC Platform, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|