1
|
Yang B, Zhang R, Ren Y, Tong M, Li K, Yan T, He J. Application of nano chitosan synthesized from Exopalaemon modestus shell to control the infection of cherry tomato leaves by Alternaria alternata. Int J Biol Macromol 2025; 308:142456. [PMID: 40157670 DOI: 10.1016/j.ijbiomac.2025.142456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
The early blight (EB) caused by Alternaria alternata was a major challenge in tomato production worldwide, often leading to serious yield loss. Induced resistance was currently one of the promising strategies to replace traditional chemical pesticides for controlling plant diseases. Here, nano-chitosan (Em-CNPs) were synthesized from chitosan (Em-CS) extracted from Taihu Lake Exopalaemon modestus by ion crosslinking method under the condition of the 5:3 ratio of Em-CS solution to tripolyphosphate solution at pH 4.5 for 1 h. The synthesized Em-CNPs were spherical shape and average particle size of 38.40 nm. Em-CNPs exhibited a significant inhibitory effect on the spore germination and mycelium growth of A. alternata. Furthermore, application of Em-CNPs significantly reduced the lesion area of cherry tomato leaves inoculated with A. alternata by 29.52 % and 16.59 %, compared with the control and Em-CS treatment, respectively. Multivariate analysis indicated that Em-CNPs enhanced the resistance of leaves to A. alternata by directly antifungal activity and increasing the activity of defense enzymes and the content of secondary metabolites in cherry tomato leaves. To sum up, Em-CNPs can be used as an environmentally friendly fungicide and inducer to control tomato EB in agricultural production.
Collapse
Affiliation(s)
- Boya Yang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Runan Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Mingsi Tong
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ke Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
2
|
Escobar Rodríguez C, Zaremska V, Klammsteiner T, Kampatsikas I, Münstermann N, Weichold O, Gruber S. Chitosan obtained from black soldier fly larval cuticles expands the value chain and is effective as a biocontrol agent to combat plant pathogens. Carbohydr Polym 2025; 349:123023. [PMID: 39638509 DOI: 10.1016/j.carbpol.2024.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
The industrial use of certain insects, such as the black soldier fly (BSF, Hermetia illucens), has become a burgeoning way of converting residual biomass into a valuable source of biomolecules for the feed and food industry. Here, the integration of a valuable step as an upcycling technology using biological waste from the 5th instar BSF larvae processing as a source of bioactive chitosan was explored. The goal is to pave the way for sustainable chitosan production from insect-based resources in addition to proteins, lipids, and fertilizers. The macronutrient profile of the larval waste was evaluated for chitosan extraction. After homogenization and mechanical separation of the larval pulp, enzyme-assisted extraction of chitosan from the chitin-rich matrix was performed using different combinations of commercially available proteases and lipases, followed by chemical deacetylation. The antifungal efficacy of the recovered chitosan varied depending on the extracted product and tested fungal plant pathogens. Furthermore, the plant priming effect of chitosan on Beta vulgaris promoted plant vigor and disease resistance. Seed coating resulted in improved germination and primary root growth. Thus, the extraction of chitosan from BSF larval cuticles offers an optimistic outlook for expanding the technological competence of the insect upcycling industries.
Collapse
Affiliation(s)
- Carolina Escobar Rodríguez
- FH Campus Wien University of Applied Sciences, Department of Bioengineering, Vienna, Austria; Universität Innsbruck, Department of Microbiology, Innsbruck, Austria
| | - Valeriia Zaremska
- FH Campus Wien University of Applied Sciences, Department of Bioengineering, Vienna, Austria
| | - Thomas Klammsteiner
- Universität Innsbruck, Department of Microbiology, Innsbruck, Austria; Universität Innsbruck, Department of Ecology, Innsbruck, Austria
| | - Ioannis Kampatsikas
- FH Campus Wien University of Applied Sciences, Department of Bioengineering, Vienna, Austria
| | - Nils Münstermann
- RWTH Aachen University, Institute of Building Materials Research, Aachen, Germany
| | - Oliver Weichold
- RWTH Aachen University, Institute of Building Materials Research, Aachen, Germany
| | - Sabine Gruber
- FH Campus Wien University of Applied Sciences, Department of Bioengineering, Vienna, Austria; Universität Innsbruck, Department of Microbiology, Innsbruck, Austria.
| |
Collapse
|
3
|
Teiba II, El-Bilawy EH, Abouelsaad IA, Shehata AI, Alhoshy M, Habib YJ, Abu-Elala NM, El-Khateeb N, Belal EB, Hussain WAM. The role of marine bacteria in modulating the environmental impact of heavy metals, microplastics, and pesticides: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64419-64452. [PMID: 39547992 DOI: 10.1007/s11356-024-35520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
Bacteria assume a pivotal role in mitigating environmental issues associated with heavy metals, microplastics, and pesticides. Within the domain of heavy metals, bacteria exhibit a wide range of processes for bioremediation, encompassing biosorption, bioaccumulation, and biotransformation. Toxigenic metal ions can be effectively sequestered, transformed, and immobilized, hence reducing their adverse environmental effects. Furthermore, bacteria are increasingly recognized as significant contributors to the process of biodegradation of microplastics, which are becoming increasingly prevalent as contaminants in marine environments. These microbial communities play a crucial role in the colonization, depolymerization, and assimilation processes of microplastic polymers, hence contributing to their eventual mineralization. In the realm of pesticides, bacteria play a significant role in the advancement of environmentally sustainable biopesticides and the biodegradation of synthetic pesticides, thereby mitigating their environmentally persistent nature and associated detrimental effects. Gaining a comprehensive understanding of the intricate dynamics between bacteria and anthropogenic contaminants is of paramount importance in the pursuit of technologically advanced and environmentally sustainable management approaches.
Collapse
Affiliation(s)
- Islam I Teiba
- Faculty of Agriculture, Tanta University, Tanta, 31527, Egypt.
| | - Emad H El-Bilawy
- King Salman International University, South Sinai City, 46618, Egypt
| | | | - Akram Ismael Shehata
- Department of Animal and Fish Production, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Mayada Alhoshy
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yusuf Jibril Habib
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Nermeen M Abu-Elala
- King Salman International University, South Sinai City, 46618, Egypt
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nagwa El-Khateeb
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Elsayed B Belal
- Agricultural Botany Department, (Agricultural Microbiology), Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Warda A M Hussain
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
4
|
Chandrika KP, Prasad R, Prasanna SL, Shrey B, Kavya M. Impact of biopolymer-based Trichoderma harzianum seed coating on disease incidence and yield in oilseed crops. Heliyon 2024; 10:e38816. [PMID: 39435086 PMCID: PMC11493197 DOI: 10.1016/j.heliyon.2024.e38816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
The use of microbe-based biological control for crop pests is recognized as an environmentally safe substitute for conventional chemical pesticides. However, the practical application of microbial inoculants in large-scale agriculture is underexplored, impeding their widespread commercial adoption. This study addresses the scarcity of research on effective delivery methods for microbial inoculants, particularly through seed coating, which has the potential to be a cost- and time-efficient strategy in crop management. In this research, the Trichoderma harzianum strain Th4d, a biological control agent (BCA), was incorporated into specially formulated biopolymeric compositions based on chitosan and cellulose. The efficacy of this seed coating approach was tested against various soil- and seed-borne pathogens in oilseed crops, including soybean, groundnut, and safflower. Results indicate that safflower treated with the biopolymer chitosan-based T. harzianum Th4d 1 % liquid formulation blend exhibited a higher seed yield of 793 kg/ha, seed germination of 84.7 %, and a significant reduction in wilt and root rot by 64.7 %. In groundnut crops, the seed coating led to a seed germination rate of 88.6 %, a 72 % reduction in root rot incidence, and a seed yield of 3040 kg/ha. Similarly, soybean crops treated with the biopolymer chitosan and T. harzianum Th4d displayed 83.4 % seed germination, a 70.9 % reduction in root rot, and a seed yield of 1239 kg/ha. Further on-farm evaluations demonstrated promising results, with the biopolymer chitosan-based T. harzianum Th4d 1 % liquid formulation blend seed treatment showing a high incremental cost-benefit ratio in safflower (1:4.5), soybean (1:2.5), and groundnut crops (1:3.3). This study underscores the potential of microbe-based seed coating as a sustainable and economically viable strategy for pest management in oilseed crops."
Collapse
Affiliation(s)
- K.S.V. Poorna Chandrika
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - R.D. Prasad
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - S. Lakshmi Prasanna
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - B. Shrey
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| | - M. Kavya
- ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
5
|
Meresa BK, Ayimut KM, Weldemichael MY, Geberemedhin KH, Kassegn HH, Geberemikael BA, Egigu EM. Carbohydrate elicitor-induced plant immunity: Advances and prospects. Heliyon 2024; 10:e34871. [PMID: 39157329 PMCID: PMC11327524 DOI: 10.1016/j.heliyon.2024.e34871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
The perceived negative impacts of synthetic agrochemicals gave way to alternative, biological plant protection strategies. The deployment of induced resistance, comprising boosting the natural defense responses of plants, is one of those. Plants developed multi-component defense mechanisms to defend themselves against biotic and abiotic stresses. These are activated upon recognition of stress signatures via membrane-localized receptors. The induced immune responses enable plants to tolerate and limit the impact of stresses. A systemic cascade of signals enables plants to prime un-damaged tissues, which is crucial during secondary encounters with stress. Comparable stress tolerance mechanisms can be induced in plants by the application of carbohydrate elicitors such as chitin/chitosan, β-1,3-glucans, oligogalacturonides, cellodextrins, xyloglucans, alginates, ulvans, and carrageenans. Treating plants with carbohydrate-derived elicitors enable the plants to develop resistance appliances against diverse stresses. Some carbohydrates are also known to have been involved in promoting symbiotic signaling. Here, we review recent progresses on plant resistance elicitation effect of various carbohydrate elicitors and the molecular mechanisms of plant cell perception, cascade signals, and responses to cascaded cues. Besides, the molecular mechanisms used by plants to distinguish carbohydrate-induced immunity signals from symbiotic signals are discussed. The structure-activity relationships of the carbohydrate elicitors are also described. Furthermore, we forwarded future research outlooks that might increase the utilization of carbohydrate elicitors in agriculture in order to improve the efficacy of plant protection strategies.
Collapse
Affiliation(s)
- Birhanu Kahsay Meresa
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kiros-Meles Ayimut
- Department of Crop and Horticultural Sciences, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kalayou Hiluf Geberemedhin
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Hagos Hailu Kassegn
- Department of Food Science and Postharvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Bruh Asmelash Geberemikael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Etsay Mesele Egigu
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
6
|
Ge T, Brickner JH. Inheritance of epigenetic transcriptional memory. Curr Opin Genet Dev 2024; 85:102174. [PMID: 38430840 PMCID: PMC10947848 DOI: 10.1016/j.gde.2024.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Epigenetic memory allows organisms to stably alter their transcriptional program in response to developmental or environmental stimuli. Such transcriptional programs are mediated by heritable regulation of the function of enhancers and promoters. Memory involves read-write systems that enable self-propagation and mitotic inheritance of cis-acting epigenetic marks to induce stable changes in transcription. Also, in response to environmental cues, cells can induce epigenetic transcriptional memory to poise inducible genes for faster induction in the future. Here, we discuss modes of epigenetic inheritance and the molecular basis of epigenetic transcriptional memory.
Collapse
Affiliation(s)
- Tiffany Ge
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Siddique AB, Parveen S, Rahman MZ, Rahman J. Revisiting plant stress memory: mechanisms and contribution to stress adaptation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:349-367. [PMID: 38623161 PMCID: PMC11016036 DOI: 10.1007/s12298-024-01422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 04/17/2024]
Abstract
Highly repetitive adverse environmental conditions are encountered by plants multiple times during their lifecycle. These repetitive encounters with stresses provide plants an opportunity to remember and recall the experiences of past stress-associated responses, resulting in better adaptation towards those stresses. In general, this phenomenon is known as plant stress memory. According to our current understanding, epigenetic mechanisms play a major role in plants stress memory through DNA methylation, histone, and chromatin remodeling, and modulating non-coding RNAs. In addition, transcriptional, hormonal, and metabolic-based regulations of stress memory establishment also exist for various biotic and abiotic stresses. Plant memory can also be generated by priming the plants using various stressors that improve plants' tolerance towards unfavorable conditions. Additionally, the application of priming agents has been demonstrated to successfully establish stress memory. However, the interconnection of all aspects of the underlying mechanisms of plant stress memory is not yet fully understood, which limits their proper utilization to improve the stress adaptations in plants. This review summarizes the recent understanding of plant stress memory and its potential applications in improving plant tolerance towards biotic and abiotic stresses.
Collapse
Affiliation(s)
- Abu Bakar Siddique
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250 Australia
| | - Sumaya Parveen
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Md. Zahidur Rahman
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| | - Jamilur Rahman
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207 Bangladesh
| |
Collapse
|
8
|
Sikandar A, Gao F, Mo Y, Chen Q, Ullah RMK, Wu H. Efficacy of Aspergillus tubingensis GX3' Fermentation against Meloidogyne enterolobii in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2724. [PMID: 37514339 PMCID: PMC10385188 DOI: 10.3390/plants12142724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Meloidogyne enterolobii is one of the most virulent root-knot nematodes (RKNs). Aspergillus tubingensis Raoul Mosseray, 1934, is used to produce bioactive substances, enzymes, and secondary metabolites. However, no research has been conducted yet on the efficacy of A. tubingensis against plant-parasitic nematodes. Thus, the novel research was planned to evaluate the biocontrol efficacy of A. tubingensis fermentation against M. enterolobii. The findings showed that egg hatching inhibition and mortality of M. enterolobii increased with increasing concentration of fermentation and exposure time. The maximum second-stage juveniles (J2s) mortality was achieved via 100% fermentation at 72 h. Similarly, 100% fermentation inhibited 99.9% of egg hatching at 8 d. A. tubingensis fermentation increased plant biomass, decreased second-stage juvenile invasion, and inhibited nematode development and reproduction in greenhouse conditions. A. tubingensis reduced J2 invasion into tomato roots by 42.84% with CS+ (coated seeds plants with nematodes inoculum) and 27.04% with T+ (100% fermentation broth and nematodes inoculum both) treatments. Moreover, CS+ and T+ treatments decreased nematode development by 54.31% and 21.48%, respectively. It is concluded that the A. tubingensis GX3 strain can be used as a novel microbial biocontrol agent against M. enterolobii.
Collapse
Affiliation(s)
- Aatika Sikandar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Fukun Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Yixue Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rana Muhammad Kaleem Ullah
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Haiyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol 2023; 14:1160551. [PMID: 37206337 PMCID: PMC10189891 DOI: 10.3389/fmicb.2023.1160551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Hailin Guo
- Science and Technology Innovation Development Center of Bijie City, Bijie, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Mengyu Zhao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
- *Correspondence: Jingjun Ruan,
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Jie Chen,
| |
Collapse
|
10
|
Lopez-Nuñez R, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV. Chitosan and nematophagous fungi for sustainable management of nematode pests. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:980341. [PMID: 37746197 PMCID: PMC10512356 DOI: 10.3389/ffunb.2022.980341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.
Collapse
Affiliation(s)
- Raquel Lopez-Nuñez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
11
|
Yang Z, Zhi P, Chang C. Priming seeds for the future: Plant immune memory and application in crop protection. FRONTIERS IN PLANT SCIENCE 2022; 13:961840. [PMID: 35968080 PMCID: PMC9372760 DOI: 10.3389/fpls.2022.961840] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 05/12/2023]
Abstract
Plants have evolved adaptive strategies to cope with pathogen infections that seriously threaten plant viability and crop productivity. Upon the perception of invading pathogens, the plant immune system is primed, establishing an immune memory that allows primed plants to respond more efficiently to the upcoming pathogen attacks. Physiological, transcriptional, metabolic, and epigenetic changes are induced during defense priming, which is essential to the establishment and maintenance of plant immune memory. As an environmental-friendly technique in crop protection, seed priming could effectively induce plant immune memory. In this review, we highlighted the recent advances in the establishment and maintenance mechanisms of plant defense priming and the immune memory associated, and discussed strategies and challenges in exploiting seed priming on crops to enhance disease resistance.
Collapse
|