1
|
Wu Y, Zhao N, Jiang Y, Zheng X, Yu T, Yan F. Positive effects of yeast soluble cell wall polysaccharide on fruit postharvest control through resistance response. Int J Biol Macromol 2024; 281:136003. [PMID: 39443171 DOI: 10.1016/j.ijbiomac.2024.136003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Yeast-derived cell wall polysaccharides possess numerous biological activities, but their application in postharvest preservation is rarely reported. The aim of this research was to investigate the effects of Kluyveromyces marxianus soluble cell wall polysaccharide (SCWP) on preventing the infection of Penicillium expansum in pear fruit. The results showed that K. marxianus SCWP treatment could significantly improve the resistance of pear fruit to P. expansum, with respect to Saccharomyces cerevisiae-derived SCWP. Composition of both SCWPs was mannan with the main chains consisting of a → 6)-α-D-Manp-(1 → unit and the branch structure formed by → 2)-α-D-Manp-(1 except that K. marxianus SCWP took on a shorter side chain and a rougher surface than S. cerevisiae SCWP. In addition, mechanisms of K. marxianus SCWP on stimulating resistance response were associated with the apparent oxidative burst, increased gene expression and enzyme activity of antioxidant and defense systems in pear fruit. Our findings suggest that K. marxianus SCWP can be used as an innovative and promising candidate for preventing postharvest fungal decay and extending fruit shelf life.
Collapse
Affiliation(s)
- Yalan Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yiwei Jiang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fujie Yan
- National Engineering Laboratory of Intelligent Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Pandey AK, Yadav S, Samota MK, Sharma HK, Roy S. Trichoderma harzianum TIND02 upregulates the expression of pathogenesis-related genes and enzymes and enhances gray blight resistance in tea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106115. [PMID: 39477576 DOI: 10.1016/j.pestbp.2024.106115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 11/07/2024]
Abstract
The gray blight incited by Pestalotiopsis and allied genera is a prevalent disease affecting tea cultivation, and managing it with Trichoderma spp. is an alternative to synthetic fungicides. Plants modify their arsenal system against pathogens when they are exposed to Trichoderma spp., which produces proteins and enzymes associated with pathogenesis. Understanding the expression pattern of defense-related markers will help in developing gray blight resistance tea cultivars. Thus, this study intended to induce resistance against gray blight in tea by Trichoderma harzianum TIND02. For this, a total of eight Trichoderma isolates originated from organic tea rhizospheres were characterized and evaluated for their efficacy. Dual culture test revealed isolate TIND02 as the most potential candidate with 74.6% inhibitory activity against gray blight pathogen Pseudopestalotiopsis theae. Molecular characterization based on ITS and tef-1 alpha genes confirmed isolate TIND02 as T. harzianum. Scanning electron microscopic study showed the mycoparasitic nature of T. harzianum TIND02 (TH-TIND02) to Ps. theae. The ethyl acetate extract of TH-TIND02 at 100 and 200 μg mL-1 showed potential inhibitory activity (>69.9%) against Ps. theae which confirmed the presence of higher volatile metabolites. Gas chromatography-Mass spectrometry study revealed that ethyl acetate extract of TH-TIND02 was composed of 21 major and minor volatile organic compounds with acetamide, 2, 2, 2-trifluoro-N, N-bis trimethyIsilyl-C (94.74%) as a major component. The isolate also produced chitinase, cellulase, β-1, 3 glucanase, and protease hydrolytic enzymes. Nursery experiments revealed that 2% and 5% doses (2 × 106 CFU mL-1) of TH-TIND02 significantly reduced respective 65.0% and 70.0% disease severity over control with improved plant growth. Besides, expressions of defense-related enzymes (chitinase, pHenolics, peroxidase, phenylalanine ammonia lyase, β-1, 3-glucanase, and polyphenol oxidase) and pathogenesis-related genes (chitinase and β-1, 3-glucanase) due to TH-TIND02 were determined. The secretion of defense-related enzymes was highly upregulated in plants applied with TH-TIND02 followed by Ps. theae inoculation compared to controls. The RT-qPCR analysis showed that the expression of both genes in co-inoculated plants was two-fold higher than in control after 21-day post incubation. These results suggest that TH-TIND02 application reduced gray blight severity by elevated enzyme activity and overexpressed pathogenesis-related genes in tea plants which offer for its eco-friendly and sustainable use as a bio-fungicide in tea gardens.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata 735225, Jalpaiguri, West Bengal, India.
| | - Shivanand Yadav
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata 735225, Jalpaiguri, West Bengal, India
| | - Mahesh K Samota
- Horticulture Crop Processing Division, ICAR- Central Institute of Post-Harvest Engineering & Technology, Abohar 152116, Punjab, India
| | - Harshit K Sharma
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Centre, Nagrakata 735225, Jalpaiguri, West Bengal, India
| | - Somnath Roy
- Tea Research Association, Tocklai Tea Research Institute, Jorhat 785008, Assam, India
| |
Collapse
|
3
|
Yang D, Chen H, Zhang Y, Wang Y, Zhai Y, Xu G, Ding Q, Wang M, Zhang QA, Lu X, Yan C. Genome-Wide Identification and Expression Analysis of the Melon Aldehyde Dehydrogenase (ALDH) Gene Family in Response to Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:2939. [PMID: 39458887 PMCID: PMC11510909 DOI: 10.3390/plants13202939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Through the integration of genomic information, transcriptome sequencing data, and bioinformatics methods, we conducted a comprehensive identification of the ALDH gene family in melon. We explored the impact of this gene family on melon growth, development, and their expression patterns in various tissues and under different stress conditions. Our study discovered a total of 17 ALDH genes spread across chromosomes 1, 2, 3, 4, 5, 7, 8, 11, and 12 in the melon genome. Through a phylogenetic analysis, these genes were classified into 10 distinct subfamilies. Notably, genes within the same subfamily exhibited consistent gene structures and conserved motifs. Our study discovered a pair of fragmental duplications within the melon ALDH gene. Furthermore, there was a noticeable collinearity relationship between the melon's ALDH gene and that of Arabidopsis (12 times), and rice (3 times). Transcriptome data reanalysis revealed that some ALDH genes consistently expressed highly across all tissues and developmental stages, while others were tissue- or stage-specific. We analyzed the ALDH gene's expression patterns under six stress types, namely salt, cold, waterlogged, powdery mildew, Fusarium wilt, and gummy stem blight. The results showed differential expression of CmALDH2C4 and CmALDH11A3 under all stress conditions, signifying their crucial roles in melon growth and stress response. RT-qPCR (quantitative reverse transcription PCR) analysis further corroborated these findings. This study paves the way for future genetic improvements in melon molecular breeding.
Collapse
Affiliation(s)
- Dekun Yang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- Anhui Society for Horticultural Science, Hefei 230001, China
| | - Hongli Chen
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- Anhui Society for Horticultural Science, Hefei 230001, China
| | - Yu Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yan Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Yongqi Zhai
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Gang Xu
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Qiangqiang Ding
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Mingxia Wang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Qi-an Zhang
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Congsheng Yan
- Institute of Vegetables, Anhui Academy of Agricultural Sciences, Hefei 230001, China (Y.Z.)
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei 230001, China
| |
Collapse
|
4
|
Wonglom P, Ruangwong OU, Poncheewin W, Arikit S, Riangwong K, Sunpapao A. Trichoderma-Bioenriched Vermicompost Induces Defense Response and Promotes Plant Growth in Thai Rice Variety "Chor Khing". J Fungi (Basel) 2024; 10:582. [PMID: 39194907 DOI: 10.3390/jof10080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Vermicompost (VC) produced by African nightcrawler earthworms (Eudrilus eugeniae) is a natural fertilizer with a rich microbial community. Trichoderma asperelloides PSU-P1 is an effective antagonistic microorganism with multifaceted activity mechanisms. This research aimed to develop Trichoderma-bioenriched vermicompost (TBVC) to promote plant growth and induce the defense response in the Thai rice variety "Chor Khing". T. asperelloides PSU-P1 was tested against Rhizoctonia solani, the pathogen of sheath blight disease, using a dual-culture assay. The results showed that T. asperelloides PSU-P1 effectively inhibited R. solani in vitro growth by 70.48%. The TBVC was prepared by adding a conidial suspension (108 conidia/mL) to vermicompost. The viability of Trichoderma persisted in the vermicompost for 6 months and ranged from 1.2 to 2.8 × 107 CFU/mL. Vermicompost water extracts significantly enhanced seed germination, root length, and shoot length compared to a control group (p < 0.05). Plants that received the TBVC displayed significantly longer shoot and root lengths and higher total chlorophyll content than control plants (p < 0.05). The TBVC induced defense response by increasing the enzyme activity of peroxidase (POD) and polyphenol oxidase (PPO) in comparison with control plants. Rice grown in the TBVC had a significantly reduced incidence of sheath blight caused by R. solani in comparison with control rice (p < 0.05). Furthermore, the fungal community of rice plants was analyzed via the high-throughput next-generation sequencing of the internal transcribed spacer (ITS). The fungal community in the TBVC had greater alpha diversity than the community in the VC. Phylum Ascomycota was dominant in both samples, and a heat map showed that Trichoderma was more prevalent in the TBVC than in the VC. Our results indicate that the enrichment of VC with Trichoderma increases growth, enhances the defense response, and reduces the incidence of sheath blight disease in the Thai rice variety "Chor Khing".
Collapse
Affiliation(s)
- Prisana Wonglom
- Faculty of Technology and Community Development, Thaksin University, Pa-Payom 93210, Thailand
| | - On-Uma Ruangwong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang Chiang Mai 50200, Thailand
| | - Wasin Poncheewin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 10120, Thailand
| | - Siwaret Arikit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Kamphaeng Saen 73140, Thailand
| | - Kanamon Riangwong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Nakhon Pathom 73000, Thailand
| | - Anurag Sunpapao
- Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Hatyai, 90110, Thailand
| |
Collapse
|
5
|
Intana W, Suwannarach N, Kumla J, Wonglom P, Sunpapao A. Plant Growth Promotion and Biological Control against Rhizoctonia solani in Thai Local Rice Variety "Chor Khing" Using Trichoderma breve Z2-03. J Fungi (Basel) 2024; 10:417. [PMID: 38921403 PMCID: PMC11204415 DOI: 10.3390/jof10060417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
Several strains of Trichoderma are applied in the field to control plant diseases due to their capacity to suppress fungal pathogens and control plant diseases. Some Trichoderma strains also are able to promote plant growth through the production of indole-3-acetic acid (IAA). In southern Thailand, the local rice variety "Chor Khing" is mainly cultivated in the Songkhla province; it is characterized by slow growth and is susceptible to sheath blight caused by Rhizoctonia solani. Therefore, this research aimed to screen Trichoderma species with the ability to promote plant growth in this rice variety and enact biological control against R. solani. A total of 21 Trichoderma isolates were screened for indole compound production using the Salkowski reagent. The Z2-03 isolate reacted positively to the Salkowski reagent, indicating the production of the indole compound. High-performance liquid chromatography (HPCL) confirmed that Z2-03 produced IAA at 35.58 ± 7.60 μg/mL. The cell-free culture filtrate of the potato dextrose broth (CF) of Z2-03 induced rice germination in rice seeds, yielding root and shoot lengths in cell-free CF-treated rice that were significantly higher than those of the control (distilled water and culture broth alone). Furthermore, inoculation with Trichoderma conidia promoted rice growth and induced a defense response against R. solani during the seedling stage. Trichoderma Z2-03 displayed an antifungal capacity against R. solani, achieving 74.17% inhibition (as measured through dual culture assay) and the production of siderophores on the CAS medium. The pot experiment revealed that inoculation with the Trichoderma sp. Z2-03 conidial suspension increased the number of tillers and the plant height in the "Chor Khing" rice variety, and suppressed the percentage of disease incidence (PDI). The Trichoderma isolate Z2-03 was identified, based on the morphology and molecular properties of ITS, translation elongation factor 1-alpha (tef1-α), and RNA polymerase 2 (rpb2), as Trichoderma breve Z2-03. Our results reveal the ability of T. breve Z2-03 to act as a plant growth promoter, enhancing growth and development in the "Chor Khing" rice variety, as well as a biological control agent through its competition and defense induction mechanism in this rice variety.
Collapse
Affiliation(s)
- Warin Intana
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
| | - Prisana Wonglom
- Faculty of Technology and Community Development, Thaksin University, Papayom 93210, Thailand;
| | - Anurag Sunpapao
- Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Hatyai 90110, Thailand
| |
Collapse
|
6
|
Athinuwat D, Ruangwong OU, Harishchandra DL, Pitija K, Sunpapao A. Biological Control Activities of Rhizosphere Fungus Trichoderma virens T1-02 in Suppressing Flower Blight of Flamingo Flower ( Anthurium andraeanum Lind.). J Fungi (Basel) 2024; 10:66. [PMID: 38248975 PMCID: PMC10817541 DOI: 10.3390/jof10010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Flower blight caused by Neopestalotiopsis clavispora is an emerging disease of flamingo flower (Anthurium andraeanum Lind.) that negatively impacts flower production. The use of rhizosphere fungi as biocontrol agents is an alternative way to control this disease instead of using synthetic fungicides. This research aimed to screen the potential of rhizosphere fungi, Trichoderma spp., with diverse antifungal abilities to control N. clavispora and to reduce flower blight in flamingo flowers. A total of ten isolates were tested against N. clavispora by dual culture assay, and T1-02 was found to be the most effective isolate against N. clavispora, with inhibition of 78.21%. Morphology and molecular phylogeny of multiple DNA sequences of the genes, the internal transcribed spacer (ITS), translation elongation factor 1-α (tef1-α), and RNA polymerase 2 (rpb2) identified isolate T1-02 as Trichoderma virens. Sealed plate method revealed T. virens T1-02 produced volatile antifungal compounds (VOCs) against N. clavispora, with inhibition of 51.28%. Solid-phase microextraction (SPME) was applied to trap volatiles, and GC/MS profiling showed VOCs emitted from T. virens T1-02 contained a sesquiterpene antifungal compound-germacrene D. The pre-colonized plate method showed that T. virens T1-02 aggressively colonized in tested plates with inhibition of 100% against N. clavispora, and microscopy revealed direct parasitism onto fungal hyphae. Furthermore, the application of T. virens T1-02 spore suspension reduced the disease severity index (DSI) of flower blight in flamingo flowers. Based on the results from this study, T. virens T1-02 displays multiple antagonistic mechanisms and has the potential ability to control flower blight of flamingo flowers caused by N. clavispora.
Collapse
Affiliation(s)
- Dusit Athinuwat
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang District, Pathum Thani 12120, Thailand;
| | - On-Uma Ruangwong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (O.-U.R.); (D.L.H.)
| | - Dulanjalee L. Harishchandra
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai 50200, Thailand; (O.-U.R.); (D.L.H.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kitsada Pitija
- PerkinElmer Scientific (Thailand) Co., Ltd., 290 Soi Soonvijai 4, Bang Kapi, Huai Kwang, Bangkok 10310, Thailand;
| | - Anurag Sunpapao
- Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Hatyai 90110, Thailand
| |
Collapse
|
7
|
Kaewsuksaeng S, Wonglom P, Sunpapao A. Electrostatic Atomized Water Particles Induce Disease Resistance in Muskmelon ( Cucumis melo L.) against Postharvest Fruit Rot Caused by Fusarium incarnatum. J Fungi (Basel) 2023; 9:745. [PMID: 37504733 PMCID: PMC10381922 DOI: 10.3390/jof9070745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The postharvest quality of muskmelon can be affected by fruit rot caused by the fungus Fusarium incarnatum, resulting in loss of quality. The utilization of electrostatic atomized water particles (EAWPs) in agriculture applications has been shown to induce disease resistance in plants. Therefore, in this study, we determined the effect of electrostatic atomized water particles (EAWPs) on the disease resistance of muskmelon fruits against postharvest fruit rot caused by F. incarnatum. EAWPs were applied to muskmelon fruits for 0, 30, 60, and 90 min. EAWP-treated muskmelon fruits were inoculated with F. incarnatum, and disease progress was measured. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of the chitinase (CmCHI) and β-1,3-glucanase (CmGLU) genes of Cucumis melo (muskmelon) was performed for EAWP-treated and -untreated muskmelon fruits. The activities of cell-wall-degrading enzymes (CWDEs), chitinase, and β-1,3-glucanase were also assayed in EAWP-treated and -untreated muskmelon fruits. The results showed that disease progress was limited by EAWP treatment for 30 min prior to pathogen inoculation. Muskmelon fruits treated with EAWPs for 30 min showed an upregulation of CWDE genes, CmCHI and CmGLU, as observed by qRT-PCR, leading to high chitinase and β-1,3-glucanase activities, as observed through enzyme assays. The results of SEM microscopy revealed that the effect of the crude enzymes of EAWP-treated muskmelon caused morphological changes in F. incarnatum mycelia. Furthermore, treatment with EAWPs preserved postharvest quality in muskmelon, including with regard to texture stiffness and total chlorophyll contents, compared to untreated muskmelon. These results demonstrate that the pretreatment of muskmelon with EAWPs suppresses the development of F. incarnatum in the early stage of infection by regulating gene expression of CWDEs and elevating the activities of CWDEs, while also maintaining postharvest muskmelon quality.
Collapse
Affiliation(s)
- Samak Kaewsuksaeng
- Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand
| | - Prisana Wonglom
- Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand
| | - Anurag Sunpapao
- Agricultural Innovation and Management Division (Pest Management), Faculty of Natural Resources, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
8
|
Yao X, Guo H, Zhang K, Zhao M, Ruan J, Chen J. Trichoderma and its role in biological control of plant fungal and nematode disease. Front Microbiol 2023; 14:1160551. [PMID: 37206337 PMCID: PMC10189891 DOI: 10.3389/fmicb.2023.1160551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023] Open
Abstract
Trichoderma is mainly used to control soil-borne diseases as well as some leaf and panicle diseases of various plants. Trichoderma can not only prevent diseases but also promotes plant growth, improves nutrient utilization efficiency, enhances plant resistance, and improves agrochemical pollution environment. Trichoderma spp. also behaves as a safe, low-cost, effective, eco-friendly biocontrol agent for different crop species. In this study, we introduced the biological control mechanism of Trichoderma in plant fungal and nematode disease, including competition, antibiosis, antagonism, and mycoparasitism, as well as the mechanism of promoting plant growth and inducing plant systemic resistance between Trichoderma and plants, and expounded on the application and control effects of Trichoderma in the control of various plant fungal and nematode diseases. From an applicative point of view, establishing a diversified application technology for Trichoderma is an important development direction for its role in the sustainable development of agriculture.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Hailin Guo
- Science and Technology Innovation Development Center of Bijie City, Bijie, China
| | - Kaixuan Zhang
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing, China
| | - Mengyu Zhao
- College of Agronomy, Guizhou University, Guiyang, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang, China
- *Correspondence: Jingjun Ruan,
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Jie Chen,
| |
Collapse
|