1
|
Zhang Q, Li R, Lin Y, Zhao W, Lin Q, Ouyang L, Pang S, Zeng H. Dynamics of Physiological Properties and Endophytic Fungal Communities in the Xylem of Aquilaria sinensis (Lour.) with Different Induction Times. J Fungi (Basel) 2024; 10:562. [PMID: 39194888 DOI: 10.3390/jof10080562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/29/2024] Open
Abstract
Xylem-associated fungus can secrete many secondary metabolites to help Aquilaria trees resist various stresses and play a crucial role in facilitating agarwood formation. However, the dynamics of endophytic fungi in Aquilaria sinensis xylem after artificial induction have not been fully elaborated. Endophytic fungi communities and xylem physio-biochemical properties were examined before and after induction with an inorganic salt solution, including four different times (pre-induction (0M), the third (3M), sixth (6M) and ninth (9M) month after induction treatment). The relationships between fungal diversity and physio-biochemical indices were evaluated. The results showed that superoxide dismutase (SOD) and peroxidase (POD) activities, malondialdehyde (MDA) and soluble sugar content first increased and then decreased with induction time, while starch was heavily consumed after induction treatment. Endophytic fungal diversity was significantly lower after induction treatment than before, but the species richness was promoted. Fungal β-diversity was also clustered into four groups according to different times. Core species shifted from rare to dominant taxa with induction time, and growing species interactions in the network indicate a gradual complication of fungal community structure. Endophytic fungi diversity and potential functions were closely related to physicochemical indices that had less effect on the relative abundance of the dominant species. These findings help assess the regulatory mechanisms of microorganisms that expedite agarwood formation after artificial induction.
Collapse
Affiliation(s)
| | - Rongrong Li
- Fujian Academy of Forestry, Fuzhou 350012, China
| | - Yang Lin
- School of Design, Fujian University of Technology, Fuzhou 350001, China
| | - Weiwei Zhao
- College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
| | - Qiang Lin
- Fujian Academy of Forestry, Fuzhou 350012, China
| | - Lei Ouyang
- Fujian Academy of Forestry, Fuzhou 350012, China
| | - Shengjiang Pang
- Experimental Center of Tropical Forestry, Chinese Academy of Forestry, Pingxiang 536000, China
| | - Huahao Zeng
- Fujian Academy of Forestry, Fuzhou 350012, China
| |
Collapse
|
2
|
Ali I, Qaiser H, Abdullah R, Kaleem A, Iqtedar M, Iqbal I, Chen X. Prospective Roles of Extremophilic Fungi in Climate Change Mitigation Strategies. J Fungi (Basel) 2024; 10:385. [PMID: 38921371 PMCID: PMC11204837 DOI: 10.3390/jof10060385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Climate change and the resultant environmental deterioration signify one of the most challenging problems facing humankind in the 21st century. The origins of climate change are multifaceted and rooted in anthropogenic activities, resulting in increasing greenhouse gases in the environment and leading to global warming and weather drifts. Extremophilic fungi, characterized by their exceptional properties to survive extreme habitats, harbor great potential in mitigating climate change effects. This review provides insight into the potential applications of extremophilic fungi in climate change mitigation strategies. They are able to metabolize organic biomass and degrade carbon compounds, thereby safely sequestering carbon and extenuating its release into the environment as noxious greenhouse gases. Furthermore, they possess extremozymes, which break down recalcitrant organic species, including lignocellulosic biomass and hydrocarbons. Enzymatic machinery equips these extremophilic fungi to perform the bioremediation of polluted environments. Extremophilic fungi can also be exploited for various biological interventions, such as biofuels, bioplastics, and other bioprocessing applications. However, these fungi characterize a valued but underexplored resource in the arsenal of climate change mitigation strategies.
Collapse
Affiliation(s)
- Imran Ali
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore 54000, Pakistan
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Hina Qaiser
- Department of Biology, Lahore Garrison University, Lahore 54000, Pakistan;
| | - Roheena Abdullah
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Afshan Kaleem
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Mehwish Iqtedar
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Irfana Iqbal
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan; (A.K.); (M.I.); (I.I.)
| | - Xiaoming Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
3
|
Isola D, Lee HJ, Chung YJ, Zucconi L, Pelosi C. Once upon a Time, There Was a Piece of Wood: Present Knowledge and Future Perspectives in Fungal Deterioration of Wooden Cultural Heritage in Terrestrial Ecosystems and Diagnostic Tools. J Fungi (Basel) 2024; 10:366. [PMID: 38786721 PMCID: PMC11122135 DOI: 10.3390/jof10050366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Wooden Cultural Heritage (WCH) represents a significant portion of the world's historical and artistic heritage, consisting of immovable and movable artefacts. Despite the expertise developed since ancient times to enhance its durability, wooden artefacts are inevitably prone to degradation. Fungi play a pivotal role in the deterioration of WCH in terrestrial ecosystems, accelerating its decay and leading to alterations in color and strength. Reviewing the literature of the last 25 years, we aimed to provide a comprehensive overview of fungal diversity affecting WCH, the biochemical processes involved in wood decay, and the diagnostic tools available for fungal identification and damage evaluation. Climatic conditions influence the occurrence of fungal species in threatened WCH, characterized by a prevalence of wood-rot fungi (e.g., Serpula lacrymans, Coniophora puteana) in architectural heritage in temperate and continental climates and Ascomycota in indoor and harsh environments. More efforts are needed to address the knowledge fragmentation concerning biodiversity, the biology of the fungi involved, and succession in the degradative process, which is frequently centered solely on the main actors. Multidisciplinary collaboration among engineers, restorers, and life sciences scientists is vital for tackling the challenges posed by climate change with increased awareness. Traditional microbiology and culture collections are fundamental in laying solid foundations for a more comprehensive interpretation of big data.
Collapse
Affiliation(s)
- Daniela Isola
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Hyun-Ju Lee
- Institute of Preventive Conservation for Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Yong-Jae Chung
- Department of Heritage Conservation and Restoration, Graduate School of Cultural Heritage, Korea National University of Cultural Heritage, Buyeo 33115, Republic of Korea;
| | - Laura Zucconi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| | - Claudia Pelosi
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Largo dell’Università Snc, 01100 Viterbo, Italy;
| |
Collapse
|
4
|
Hu B, Ouyang Y, Zhao T, Wang Z, Yan Q, Qian Q, Wang W, Wang S. Antioxidant Hydrogels: Antioxidant Mechanisms, Design Strategies, and Applications in the Treatment of Oxidative Stress-Related Diseases. Adv Healthc Mater 2024; 13:e2303817. [PMID: 38166174 DOI: 10.1002/adhm.202303817] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/23/2023] [Indexed: 01/04/2024]
Abstract
Oxidative stress is a biochemical process that disrupts the redox balance due to an excess of oxidized substances within the cell. Oxidative stress is closely associated with a multitude of diseases and health issues, including cancer, diabetes, cardiovascular diseases, neurodegenerative disorders, inflammatory conditions, and aging. Therefore, the developing of antioxidant treatment strategies has emerged as a pivotal area of medical research. Hydrogels have garnered considerable attention due to their exceptional biocompatibility, adjustable physicochemical properties, and capabilities for drug delivery. Numerous antioxidant hydrogels have been developed and proven effective in alleviating oxidative stress. In the pursuit of more effective treatments for oxidative stress-related diseases, there is an urgent need for advanced strategies for the fabrication of multifunctional antioxidant hydrogels. Consequently, the authors' focus will be on hydrogels that possess exceptional reactive oxygen species and reactive nitrogen species scavenging capabilities, and their role in oxidative stress therapy will be evaluated. Herein, the antioxidant mechanisms and the design strategies of antioxidant hydrogels and their applications in oxidative stress-related diseases are discussed systematically in order to provide critical insights for further advancements in the field.
Collapse
Affiliation(s)
- Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Ouyang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Tong Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Zhengyue Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Qiling Yan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Qinyuan Qian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| | - Wenyi Wang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, 999077, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
5
|
Rungjindamai N, Jones EBG. Why Are There So Few Basidiomycota and Basal Fungi as Endophytes? A Review. J Fungi (Basel) 2024; 10:67. [PMID: 38248976 PMCID: PMC10820240 DOI: 10.3390/jof10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
A review of selected studies on fungal endophytes confirms the paucity of Basidiomycota and basal fungi, with almost 90% attributed to Ascomycota. Reasons for the low number of Basidiomycota and basal fungi, including the Chytridiomycota, Mucoromycota, and Mortierellomycota, are advanced, including isolation procedure and media, incubation period and the slow growth of basidiomycetes, the identification of non-sporulating isolates, endophyte competition, and fungus-host interactions. We compare the detection of endophytes through culture-dependent methods and culture-independent methods, the role of fungi on senescence of the host plant, and next-generation studies.
Collapse
Affiliation(s)
- Nattawut Rungjindamai
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
6
|
Afonso Kessler de Andrade G, de Vargas MVM, Goulart SNB, Bernardes BM, Bezerra JDP, Lemos RPM, de Carvalho Victoria F, de Albuquerque MP. Screening of endophytic fungi from Antarctic mosses: Potential production for L-asparaginase free of glutaminase and urease activity. J Biotechnol 2023; 377:1-12. [PMID: 37806388 DOI: 10.1016/j.jbiotec.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Studies involving endophytic fungi aim to identify organisms inhabiting extreme and relatively unexplored environments, as these fungi possess unique characteristics and uncommon biochemical pathways that enable them to produce compounds with biotechnological potential. Among various enzymes, L-Asparaginase is employed in the treatment of Acute Lymphoblastic Leukemia. In this study, we identified endophytic fungi from Sanionia uncinata and Polytrichastrum alpinum collected on King George Island in Antarctica. The fungi were categorized into morphological groups based on their characteristics, molecularly identified, and assessed for L-Asparaginase (L-ASNase) enzyme production. Subsequently, production optimization was conducted. A total of 161 endophytes were isolated from 504 moss gametophytes, with 107 originating from P. alpinum and 54 from S. uncinata. These isolates were categorized into 31 morphotypes. Fungi exhibiting high enzyme production were identified molecularly. Among them, nine identified isolates belonged to the genera Aspergillus, Collariella, Diaporthe, Epicoccum, Peroneutypa, Xylaria, and Trametes. Three of these isolates were identified at the species level through multigene phylogeny, namely Epicoccum nigrum, Collariella virescens, and Peroneutypa scoparia. All 31 fungi were subjected to solid media testing for L-ASNase enzyme production, with 22 isolates demonstrating production capability, and 13 of them produced L-ASNase free from Urease and Glutaminase. The isolates displaying solid media production underwent further testing in liquid media, all of which exhibited enzyme production ranging from 0.75 to 1.29 U g-1. Notably, the three fungi identified at the species level were the highest producers of the enzyme (1.29, 1.17, and 1.13 U g-1). The production of these fungi was optimized using the Taguchi method, resulting in production values ranging from 0.687 to 2.461 U g-1. In conclusion, our findings indicate that Antarctic moss endophytic fungi exhibit significant potential for the production of the anti-leukemic enzyme L-ASNase.
Collapse
Affiliation(s)
- Guilherme Afonso Kessler de Andrade
- Núcleo de Estudos da Vegetação Antártica, Universidade Federal do Pampa, Rua Aluízio Barros Macedo, s/n. BR 290 - Km 423, São Gabriel, RS 97300-930, Brazil
| | - Maria Victória Magalhães de Vargas
- Núcleo de Estudos da Vegetação Antártica, Universidade Federal do Pampa, Rua Aluízio Barros Macedo, s/n. BR 290 - Km 423, São Gabriel, RS 97300-930, Brazil
| | - Sara Navarrete Bohi Goulart
- EcoHealth Lab, Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, United States
| | - Bruna Mota Bernardes
- Núcleo de Estudos da Vegetação Antártica, Universidade Federal do Pampa, Rua Aluízio Barros Macedo, s/n. BR 290 - Km 423, São Gabriel, RS 97300-930, Brazil
| | - Jadson D P Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO 74605-050, Brazil
| | - Rafael Plá Matielo Lemos
- Núcleo de Estudos da Vegetação Antártica, Universidade Federal do Pampa, Rua Aluízio Barros Macedo, s/n. BR 290 - Km 423, São Gabriel, RS 97300-930, Brazil
| | - Filipe de Carvalho Victoria
- Núcleo de Estudos da Vegetação Antártica, Universidade Federal do Pampa, Rua Aluízio Barros Macedo, s/n. BR 290 - Km 423, São Gabriel, RS 97300-930, Brazil.
| | - Margéli Pereira de Albuquerque
- Núcleo de Estudos da Vegetação Antártica, Universidade Federal do Pampa, Rua Aluízio Barros Macedo, s/n. BR 290 - Km 423, São Gabriel, RS 97300-930, Brazil; Programa Antártico Brasileiro-PROANTAR, Esplanada dos Ministérios, Brasília 70055-900, Brazil
| |
Collapse
|
7
|
Hoyos LV, Chaves A, Grandezz D, Medina A, Correa J, Ramirez-Castrillon M, Valencia D, Caicedo-Ortega NH. Systematic screening strategy for fungal laccase activity of endophytes from Otoba gracilipes with bioremediation potential. Fungal Biol 2023; 127:1298-1311. [PMID: 37821152 DOI: 10.1016/j.funbio.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023]
Abstract
Fungal laccases are promising for biotechnological applications, including bioremediation and dye biotransformation, due to their high redox potential and broad substrate specificity. However, current bioprospecting methods for identifying laccase-producing fungi can be challenging and time-consuming. For early detection, it was developed a three-step, multi-criteria weighting system that evaluates fungal strains based on: First, the biotransformation capacity of three dyes (i.e., Congo red, brilliant blue G-250, and malachite green), at three different pH values, and with a relative weighting supported for the redox potential of each colorant. The relative decolorization coefficient (RDC), used as th2e first classification criterion, expressed their potential performance. Second, under the same conditions, laccase activity was estimated by observing the different degrees of oxidation of a given substrate. The selection criterion was the relative oxidation coefficient (ROC). Finally, laccase activity was quantified in submerged fermentations using three inducers (i.e., loofah sponge, Tween 80, and veratyl alcohol). This multicriteria screening strategy evaluated sixteen isolated endophytic fungal strains from Otoba gracilipes. The system identified Beltraniopsis sp. ET-17 (at pH values of 5.00 and 5.50) as a promising strain for dye biotransformation, and Phlebia floridensis as the best laccase producer, achieving a high activity of 116 μmol min-1 L-1 with loofah sponge as an inducer. In-vitro testing confirmed the efficacy of P. floridensis, with 53.61 % decolorization of a dye mixture (brilliant blue-Congo red. ratio 1:1) after 15 days of incubation. Thus, with the proposed screening strategy it was possible to highlight two species of interest at an early bioprospecting stage on a Colombian native tree poorly explored.
Collapse
Affiliation(s)
- Laura V Hoyos
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Amada Chaves
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Daniela Grandezz
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Allison Medina
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Jhonatan Correa
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Mauricio Ramirez-Castrillon
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Drochss Valencia
- Omicas Program, Pontificia Universidad Javeriana sede Cali, Calle 18 No. 118-250, Cali, C.P. 760031, Colombia
| | - Nelson H Caicedo-Ortega
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia; Centro BioInc, Universidad Icesi, Cali, Colombia.
| |
Collapse
|
8
|
Bertini L, Proietti S, Fongaro B, Holfeld A, Picotti P, Falconieri GS, Bizzarri E, Capaldi G, Polverino de Laureto P, Caruso C. Environmental Signals Act as a Driving Force for Metabolic and Defense Responses in the Antarctic Plant Colobanthus quitensis. PLANTS (BASEL, SWITZERLAND) 2022; 11:3176. [PMID: 36432905 PMCID: PMC9695728 DOI: 10.3390/plants11223176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant Colobanthus quitensis has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species. Due to the progressive environmental change that the Antarctic Peninsula has undergone over time, a more comprehensive overview of the metabolic features of C. quitensis becomes particularly interesting to assess its ability to respond to environmental stresses. To this end, a differential proteomic approach was used to study the response of C. quitensis to different environmental cues. Many differentially expressed proteins were identified highlighting the rewiring of metabolic pathways as well as defense responses. Finally, a different modulation of oxidative stress response between different environmental sites was observed. The data collected in this paper add knowledge on the impact of environmental stimuli on plant metabolism and stress response by providing useful information on the trade-off between plant growth and defense mechanisms.
Collapse
Affiliation(s)
- Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Silvia Proietti
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35100 Padova, Italy
| | - Aleš Holfeld
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Elisabetta Bizzarri
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Gloria Capaldi
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | | | - Carla Caruso
- Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| |
Collapse
|
9
|
Perazzolli M, Vicelli B, Antonielli L, Longa CMO, Bozza E, Bertini L, Caruso C, Pertot I. Simulated global warming affects endophytic bacterial and fungal communities of Antarctic pearlwort leaves and some bacterial isolates support plant growth at low temperatures. Sci Rep 2022; 12:18839. [PMID: 36336707 PMCID: PMC9637742 DOI: 10.1038/s41598-022-23582-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022] Open
Abstract
Antarctica is one of the most stressful environments for plant life and the Antarctic pearlwort (Colobanthus quitensis) is adapted to the hostile conditions. Plant-associated microorganisms can contribute to plant survival in cold environments, but scarce information is available on the taxonomic structure and functional roles of C. quitensis-associated microbial communities. This study aimed at evaluating the possible impacts of climate warming on the taxonomic structure of C. quitensis endophytes and at investigating the contribution of culturable bacterial endophytes to plant growth at low temperatures. The culture-independent analysis revealed changes in the taxonomic structure of bacterial and fungal communities according to plant growth conditions, such as the collection site and the presence of open-top chambers (OTCs), which can simulate global warming. Plants grown inside OTCs showed lower microbial richness and higher relative abundances of biomarker bacterial genera (Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Aeromicrobium, Aureimonas, Hymenobacter, Novosphingobium, Pedobacter, Pseudomonas and Sphingomonas) and fungal genera (Alternaria, Cistella, and Vishniacozyma) compared to plants collected from open areas (OA), as a possible response to global warming simulated by OTCs. Culturable psychrotolerant bacteria of C. quitensis were able to endophytically colonize tomato seedlings and promote shoot growth at low temperatures, suggesting their potential contribution to plant tolerance to cold conditions.
Collapse
Affiliation(s)
- Michele Perazzolli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Bianca Vicelli
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Livio Antonielli
- grid.4332.60000 0000 9799 7097Center for Health and Bioresources, Bioresources Unit, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Claudia M. O. Longa
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Elisa Bozza
- grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Laura Bertini
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Carla Caruso
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università s.n.c., 01100 Viterbo, Italy
| | - Ilaria Pertot
- grid.11696.390000 0004 1937 0351Centre Agriculture, Food and the Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy ,grid.424414.30000 0004 1755 6224Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| |
Collapse
|