1
|
Pedrero-Méndez A, Cesarini M, Mendoza-Salido D, Petrucci A, Sarrocco S, Monte E, Hermosa R. Trichoderma strain-dependent direct and indirect biocontrol of Fusarium head blight caused by Fusarium graminearum in wheat. Microbiol Res 2025; 296:128153. [PMID: 40156943 DOI: 10.1016/j.micres.2025.128153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum (Fg), is a major disease of wheat not only due to crop yield losses but also because of food safety concerns, since Fg produces toxic trichotecenes, such as deoxynivalenol (DON). Different Trichoderma strains have shown biocontrol efficacy against various Fusarium spp. in a wide variety of pathosystems. In this work, the efficacy of T. asperellum T25, T. harzianum T136 and T. simmonsii T137, was assessed against Fg ITEM 124 in in vitro tests, which included dual cultures, as well as cellulose and cellophane membrane assays. The three Trichoderma strains inhibited Fg growth to varying degrees. However, only T25 and T136 demonstrated control of FHB in wheat when applied to spikes. By quantitative real-time PCR (qPCR) we analysed the expression of eight plant defence-related marker genes in wheat spikes inoculated with Trichoderma, or not, and subsequently infected with Fg. Only wheat spikes pre-treated with T25 or T136 look to activate the salicylic acid-dependent defence, in response to pathogen infection. Expression of tri genes, involved in DON biosynthesis, was analysed by qPCR in dual-culture Trichoderma-Fg confrontations in two different media, and in the plant spikes. Confrontation results indicated that tri gene expression depends on the Trichoderma strain and the culture medium, but the three Trichoderma strains reduced the expression of tri5 in the plant. Results show that T. asperellum T25 reduced FHB disease index by more than 60 %, and was the most effective biocontrol agent, employing direct mechanisms to limit Fg growth and indirect mechanisms by priming local plant defences.
Collapse
Affiliation(s)
- Alberto Pedrero-Méndez
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| | - Marco Cesarini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy.
| | - David Mendoza-Salido
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| | - Arianna Petrucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy; Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, Pisa 56124, Italy.
| | - Enrique Monte
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| | - Rosa Hermosa
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, C/ Duero 12, Campus Villamayor-Parque Científico, Villamayor, Salamanca 37185, Spain.
| |
Collapse
|
2
|
Zhen H, Hu Y, Xiong K, Li M, Jin W. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1344-1359. [PMID: 39102376 DOI: 10.1080/19440049.2024.2385713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
3
|
Kredics L, Büchner R, Balázs D, Allaga H, Kedves O, Racić G, Varga A, Nagy VD, Vágvölgyi C, Sipos G. Recent advances in the use of Trichoderma-containing multicomponent microbial inoculants for pathogen control and plant growth promotion. World J Microbiol Biotechnol 2024; 40:162. [PMID: 38613584 PMCID: PMC11015995 DOI: 10.1007/s11274-024-03965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
Chemical pesticides and fertilizers are used in agricultural production worldwide to prevent damage from plant pathogenic microorganisms, insects, and nematodes, to minimize crop losses and to preserve crop quality. However, the use of chemical pesticides and fertilizers can severely pollute soil, water, and air, posing risks to the environment and human health. Consequently, developing new, alternative, environment-friendly microbial soil treatment interventions for plant protection and crop yield increase has become indispensable. Members of the filamentous fungal genus Trichoderma (Ascomycota, Sordariomycetes, Hypocreales) have long been known as efficient antagonists of plant pathogenic microorganisms based on various beneficial traits and abilities of these fungi. This minireview aims to discuss the advances in the field of Trichoderma-containing multicomponent microbiological inoculants based on recent experimental updates. Trichoderma strains can be combined with each other, with other fungi and/or with beneficial bacteria. The development and field performance of such inoculants will be addressed, focusing on the complementarity, synergy, and compatibility of their microbial components.
Collapse
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| | - Rita Büchner
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Dóra Balázs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Henrietta Allaga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Orsolya Kedves
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Gordana Racić
- Faculty of Ecological Agriculture, Educons University, Vojvode Putnika 87, Sremska Kamenica, 21208, Serbia
| | - András Varga
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Viktor Dávid Nagy
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - György Sipos
- Functional Genomics and Bioinformatics Group, Institute of Forest and Natural Resource Management, Faculty of Forestry, University of Sopron, Sopron, 9400, Hungary
| |
Collapse
|
4
|
Xu M, Shi Y, Fan DL, Kang YJ, Yan XL, Wang HW. Co-Culture of White Rot Fungi Pleurotus ostreatus P5 and Bacillus amyloliquefaciens B2: A Strategy to Enhance Lipopeptide Production and Suppress of Fusarium Wilt of Cucumber. J Fungi (Basel) 2023; 9:1049. [PMID: 37998854 PMCID: PMC10672132 DOI: 10.3390/jof9111049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), poses a serious threat to cucumber productivity. Compared to traditional chemical pesticides, biological control strategies have attracted more attention recently owing to their effectiveness against pathogens and their environmental safety. This study investigated the effect of white rot fungi Pleurotus ostreatus P5 on the production of cyclic lipopeptides (CLPs) of Bacillus amyloliquefaciens B2 and the potential co-culture filtrate of strains B2 and P5 to control cucumber Fusarium wilt. A PCR amplification of CLP genes revealed that B. amyloliquefaciens B2 had two antibiotic biosynthesis genes, namely, ituA and srf, which are involved in iturin A and surfactin synthesis. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) revealed that CLPs derived from strain B2 contained two families, iturin A (C14, C15) and surfactin (C12-C17). The co-culture exhibited an enhanced accumulation of iturin A and surfactin compared to the monoculture of strain B2. Furthermore, the gene expressions of ituA and srf were both significantly upregulated when co-cultured with the fungus compared to monocultures. In an in vitro experiment, the co-culture filtrate and monoculture filtrate of B. amyloliquefaciens B2 inhibited mycelial growth by 48.2% and 33.2%, respectively. In a greenhouse experiment, the co-culture filtrate was superior to the monoculture filtrate in controlling cucumber Fusarium wilt disease and in the promotion of plant growth. Co-culture filtrate treatment significantly enhanced the microbial metabolic activity and decreased the abundance of FOC in the rhizosphere soil. These results show that the co-culture of P. ostreatus P5 and B. amyloliquefaciens B2 has great potential in cucumber Fusarium wilt disease prevention by enhancing the production of bacterial CLPs.
Collapse
Affiliation(s)
- Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Ying Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - De-Ling Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Yi-Jin Kang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Xin-Li Yan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| | - Hong-Wei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China
| |
Collapse
|
5
|
Hafiz FB, Geistlinger J, Al Mamun A, Schellenberg I, Neumann G, Rozhon W. Tissue-Specific Hormone Signalling and Defence Gene Induction in an In Vitro Assembly of the Rapeseed Verticillium Pathosystem. Int J Mol Sci 2023; 24:10489. [PMID: 37445666 DOI: 10.3390/ijms241310489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Priming plants with beneficial microbes can establish rapid and robust resistance against numerous pathogens. Here, compelling evidence is provided that the treatment of rapeseed plants with Trichoderma harzianum OMG16 and Bacillus velezensis FZB42 induces defence activation against Verticillium longisporum infection. The relative expressions of the JA biosynthesis genes LOX2 and OPR3, the ET biosynthesis genes ACS2 and ACO4 and the SA biosynthesis and signalling genes ICS1 and PR1 were analysed separately in leaf, stem and root tissues using qRT-PCR. To successfully colonize rapeseed roots, the V. longisporum strain 43 pathogen suppressed the biosynthesis of JA, ET and SA hormones in non-primed plants. Priming led to fast and strong systemic responses of JA, ET and SA biosynthesis and signalling gene expression in each leaf, stem and root tissue. Moreover, the quantification of plant hormones via UHPLC-MS analysis revealed a 1.7- and 2.6-fold increase in endogenous JA and SA in shoots of primed plants, respectively. In roots, endogenous JA and SA levels increased up to 3.9- and 2.3-fold in Vl43-infected primed plants compared to non-primed plants, respectively. Taken together, these data indicate that microbial priming stimulates rapeseed defence responses against Verticillium infection and presumably transduces defence signals from the root to the upper parts of the plant via phytohormone signalling.
Collapse
Affiliation(s)
- Fatema Binte Hafiz
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Joerg Geistlinger
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Abdullah Al Mamun
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Ingo Schellenberg
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Günter Neumann
- Institute of Crop Sciences, University of Hohenheim, 70593 Stuttgart, Germany
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| |
Collapse
|
6
|
Taugt17b1 Overexpression in Trichoderma atroviride Enhances Its Ability to Colonize Roots and Induce Systemic Defense of Plants. Pathogens 2023; 12:pathogens12020264. [PMID: 36839536 PMCID: PMC9959489 DOI: 10.3390/pathogens12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Trichoderma atroviride, a soil fungus, has important applications in the biocontrol of plant diseases. Glycosyltransferases enhance the root colonization ability of Trichoderma spp. This study aimed to functionally characterize glycosyltransferase Taugt17b1 in T. atroviride. We investigated the effect of Taugt17b1 overexpression in T. atroviride H18-1-1 on its biocontrol properties, especially its ability to colonize roots. Our results demonstrated that the overexpression of the Taugt17b1 increases the T. atroviride colony growth rate, improves its root colonization ability, promotes the growth and activity of the defensive enzymatic system of plants, and prevents plant diseases. This study put forth a new role of T. atroviride glycosyltransferase and furthered the understanding of the mechanisms by which fungal biocontrol agents exert their effect.
Collapse
|
7
|
Wang Y, Chen Y, Xin J, Chen X, Xu T, He J, Pan Z, Zhang C. Metabolomic profiles of the liquid state fermentation in co-culture of Eurotium amstelodami and Bacillus licheniformis. Front Microbiol 2023; 14:1080743. [PMID: 36778878 PMCID: PMC9909110 DOI: 10.3389/fmicb.2023.1080743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
As an important source of new drug molecules, secondary metabolites (SMs) produced by microorganisms possess important biological activities, such as antibacterial, anti-inflammatory, and hypoglycemic effects. However, the true potential of microbial synthesis of SMs has not been fully elucidated as the SM gene clusters remain silent under laboratory culture conditions. Herein, we evaluated the inhibitory effect of Staphylococcus aureus by co-culture of Eurotium amstelodami and three Bacillus species, including Bacillus licheniformis, Bacillus subtilis, and Bacillus amyloliquefaciens. In addition, a non-target approach based on ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) was used to detect differences in extracellular and intracellular metabolites. Notably, the co-culture of E. amstelodami and Bacillus spices significantly improved the inhibitory effect against S. aureus, with the combination of E. amstelodami and B. licheniformis showing best performance. Metabolomics data further revealed that the abundant SMs, such as Nummularine B, Lucidenic acid E2, Elatoside G, Aspergillic acid, 4-Hydroxycyclohexylcarboxylic acid, Copaene, and Pipecolic acid were significantly enhanced in co-culture. Intracellularly, the differential metabolites were involved in the metabolism of amino acids, nucleic acids, and glycerophospholipid. Overall, this work demonstrates that the co-culture strategy is beneficial for inducing biosynthesis of active metabolites in E. amstelodami and B. licheniformis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuanbo Zhang
- Laboratory of Microbial Resources and Industrial Application, College of Life Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|