1
|
Cunningham JL, Frankovich J, Dubin RA, Pedrosa E, Baykara RN, Schlenk NC, Maqbool SB, Dolstra H, Marino J, Edinger J, Shea JM, Laje G, Swagemakers SMA, Sinnadurai S, Zhang ZD, Lin JR, van der Spek PJ, Lachman HM. Ultrarare Variants in DNA Damage Repair Genes in Pediatric Acute-Onset Neuropsychiatric Syndrome or Acute Behavioral Regression in Neurodevelopmental Disorders. Dev Neurosci 2024:1-20. [PMID: 39396515 DOI: 10.1159/000541908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Acute onset of severe psychiatric symptoms or regression may occur in children with premorbid neurodevelopmental disorders, although typically developing children can also be affected. Infections or other stressors are likely triggers. The underlying causes are unclear, but a current hypothesis suggests the convergence of genes that influence neuronal and immunological function. We previously identified 11 genes in pediatric acute-onset neuropsychiatric syndrome (PANS), in which two classes of genes related to either synaptic function or the immune system were found. Among the latter, three affect the DNA damage response (DDR): PPM1D, CHK2, and RAG1. We now report an additional 17 cases with mutations in PPM1D and other DDR genes in patients with acute onset of psychiatric symptoms and/or regression that their clinicians classified as PANS or another inflammatory brain condition. METHODS We analyzed genetic findings obtained from parents and carried out whole-exome sequencing on a total of 17 cases, which included 3 sibling pairs and a family with 4 affected children. RESULTS The DDR genes include clusters affecting p53 DNA repair (PPM1D, ATM, ATR, 53BP1, and RMRP), and the Fanconi Anemia Complex (FANCE, SLX4/FANCP, FANCA, FANCI, and FANCC). We hypothesize that defects in DNA repair genes, in the context of infection or other stressors, could contribute to decompensated states through an increase in genomic instability with a concomitant accumulation of cytosolic DNA in immune cells triggering DNA sensors, such as cGAS-STING and AIM2 inflammasomes, as well as central deficits on neuroplasticity. In addition, increased senescence and defective apoptosis affecting immunological responses could be playing a role. CONCLUSION These compelling preliminary findings motivate further genetic and functional characterization as the downstream impact of DDR deficits may point to novel treatment strategies.
Collapse
Affiliation(s)
- Janet L Cunningham
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Jennifer Frankovich
- Department of Pediatrics, Division of Pediatric Allergy, Immunology, Rheumatology and Immune Behavioral Health Program, Stanford Children's Health and Stanford University School of Medicine, Palo Alto, California, USA
| | - Robert A Dubin
- Center for Epigenomics, Computational Genomics Core, Albert Einstein College of Medicine, New York, New York, USA
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Refia Nur Baykara
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Noelle Cathleen Schlenk
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shahina B Maqbool
- Department of Genetics Epigenetics Shared Facility, Albert Einstein College of Medicine, New York, New York, USA
| | - Hedwig Dolstra
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacqueline Marino
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Jacob Edinger
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Julia M Shea
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York, USA
| | - Gonzalo Laje
- Department of Psychiatry, Permian Basin, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Siamala Sinnadurai
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
- Department of Epidemiology and Health Promotion at the School of Public Health Medical Center for Postgraduate Education, Warsaw, Poland
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Department of Genetics, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Jyonouchi H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: experience in the pediatric allergy/immunology clinic. Front Psychiatry 2024; 15:1333717. [PMID: 38979496 PMCID: PMC11228311 DOI: 10.3389/fpsyt.2024.1333717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Autism spectrum disorder (ASD1) is a behaviorally defined syndrome encompassing a markedly heterogeneous patient population. Many ASD subjects fail to respond to the 1st line behavioral and pharmacological interventions, leaving parents to seek out other treatment options. Evidence supports that neuroinflammation plays a role in ASD pathogenesis. However, the underlying mechanisms likely vary for each ASD patient, influenced by genetic, epigenetic, and environmental factors. Although anti-inflammatory treatment measures, mainly based on metabolic changes and oxidative stress, have provided promising results in some ASD subjects, the use of such measures requires the careful selection of ASD subjects based on clinical and laboratory findings. Recent progress in neuroscience and molecular immunology has made it possible to allow re-purposing of currently available anti-inflammatory medications, used for autoimmune and other chronic inflammatory conditions, as treatment options for ASD subjects. On the other hand, emerging anti-inflammatory medications, including biologic and gate-keeper blockers, exert powerful anti-inflammatory effects on specific mediators or signaling pathways. It will require both a keen understanding of the mechanisms of action of such agents and the careful selection of ASD patients suitable for each treatment. This review will attempt to summarize the use of anti-inflammatory agents already used in targeting ASD patients, and then emerging anti-inflammatory measures applicable for ASD subjects based on scientific rationale and clinical trial data, if available. In our experience, some ASD patients were treated under diagnoses of autoimmune/autoinflammatory conditions and/or post-infectious neuroinflammation. However, there are little clinical trial data specifically for ASD subjects. Therefore, these emerging immunomodulating agents for potential use for ASD subjects will be discussed based on preclinical data, case reports, or data generated in patients with other medical conditions. This review will hopefully highlight the expanding scope of immunomodulating agents for treating neuroinflammation in ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers University-Robert Wood Johnson School of Medicine, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Sullivan MI, Gupta MJ, Taylor KA, Van Mater HA, Pizoli CE. Disease Course and Response to Immunotherapy in Children With Childhood Disintegrative Disorder: A Retrospective Case Series. J Child Neurol 2024; 39:11-21. [PMID: 38115714 DOI: 10.1177/08830738231220278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Childhood disintegrative disorder is a poorly understood neurobehavioral disorder of early childhood characterized by acute to subacute profound regression in previously developed language, social behavior, and adaptive functions. The etiology of childhood disintegrative disorder remains unknown and treatment is focused on symptomatic management. Interest in neuroinflammatory mechanisms has grown with the increased recognition of autoimmune brain diseases and similarities between the presenting symptoms of childhood disintegrative disorder and pediatric autoimmune encephalitis. Importantly, a diagnosis of pediatric autoimmune encephalitis requires evidence of inflammation on paraclinical testing, which is absent in childhood disintegrative disorder. Here we report 5 children with childhood disintegrative disorder who were initially diagnosed with possible autoimmune encephalitis and treated with immunotherapy. Two children had provocative improvements, whereas 3 did not change significantly on immunotherapy. Additionally, a sixth patient with childhood disintegrative disorder evaluated in our Autoimmune Brain Disease Clinic showed spontaneous improvement and is included to highlight the variable natural history of childhood disintegrative disorder that may mimic treatment responsiveness.
Collapse
Affiliation(s)
| | - Megha J Gupta
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Kathryn A Taylor
- Division of Child Neurology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Carolyn E Pizoli
- Division of Child Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
4
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
5
|
Al-Beltagi M, Saeed NK, Elbeltagi R, Bediwy AS, Aftab SAS, Alhawamdeh R. Viruses and autism: A Bi-mutual cause and effect. World J Virol 2023; 12:172-192. [PMID: 37396705 PMCID: PMC10311578 DOI: 10.5501/wjv.v12.i3.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 04/18/2023] [Indexed: 06/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of heterogeneous, multi-factorial, neurodevelopmental disorders resulting from genetic and environmental factors interplay. Infection is a significant trigger of autism, especially during the critical developmental period. There is a strong interplay between the viral infection as a trigger and a result of ASD. We aim to highlight the mutual relationship between autism and viruses. We performed a thorough literature review and included 158 research in this review. Most of the literature agreed on the possible effects of the viral infection during the critical period of development on the risk of developing autism, especially for specific viral infections such as Rubella, Cytomegalovirus, Herpes Simplex virus, Varicella Zoster Virus, Influenza virus, Zika virus, and severe acute respiratory syndrome coronavirus 2. Viral infection directly infects the brain, triggers immune activation, induces epigenetic changes, and raises the risks of having a child with autism. At the same time, there is some evidence of increased risk of infection, including viral infections in children with autism, due to lots of factors. There is an increased risk of developing autism with a specific viral infection during the early developmental period and an increased risk of viral infections in children with autism. In addition, children with autism are at increased risk of infection, including viruses. Every effort should be made to prevent maternal and early-life infections and reduce the risk of autism. Immune modulation of children with autism should be considered to reduce the risk of infection.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Alghrabia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Medical Microbiology Section, Pathology Department, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 12, Bahrain
- Microbiology Section, Pathology Department, Irish Royal College of Surgeon, Busaiteen 15503, Muharraq, Bahrain
| | - Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Pulmonolgy, Faculty of Medicine, Tanta University, Tanta 31527, Alghrabia, Egypt
- Department of Chest Disease, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Syed A Saboor Aftab
- Endocrinology and DM, William Harvey Hospital (Paula Carr Centre), Ashford TN24 0LZ, Kent, United Kingdom
| | - Rawan Alhawamdeh
- Pediatrics Research and Development, Genomics Creativity and Play Center, Manama 0000, Bahrain
| |
Collapse
|
6
|
Nabi SU, Rehman MU, Arafah A, Taifa S, Khan IS, Khan A, Rashid S, Jan F, Wani HA, Ahmad SF. Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics. Curr Neuropharmacol 2023; 21:1042-1064. [PMID: 36411568 PMCID: PMC10286588 DOI: 10.2174/1570159x21666221121095618] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Taifa
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Iqra Shafi Khan
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Fatimah Jan
- Department of Pharmaceutical Sciences, CT University, Ludhiana, Ferozepur Road, Punjab, 142024, India
| | - Hilal Ahmad Wani
- Department of Biochemistry, Government Degree College Sumbal, Bandipora, J&K, India
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Maltsev D, Natrus L. Концепція імунопатогенезу енцефалопатії у дітей з розладами спектра аутизму, асоційованими з генетичним дефіцитом фолатного циклу, та потенційні терапевтичні напрямки. INTERNATIONAL NEUROLOGICAL JOURNAL 2022; 18:50-60. [DOI: 10.22141/2224-0713.18.4.2022.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Аналітичний огляд підсумовує результати власних досліджень у поєднанні із прогресивними поглядами сучасних наукових шкіл щодо актуальної проблеми у світі — діагностики і лікування дітей із розладами спектра аутизму. Отримані дані дозволили сформулювати наукову концепцію імунопатогенезу енцефалопатії у дітей, яка описує найбільш ймовірний сценарій патологічних подій, починаючи з появи патогенних поліморфних замін нуклеотидів у геномі плода і закінчуючи розвитком клінічних симптомів нейропсихіатричних порушень у дитини. Висунення такої концепції відкриває шлях до розробки алгоритму лікування дітей з розладами спектра аутизму, який раніше не був доступним.
Collapse
|
8
|
Jensen AR, Lane AL, Werner BA, McLees SE, Fletcher TS, Frye RE. Modern Biomarkers for Autism Spectrum Disorder: Future Directions. Mol Diagn Ther 2022; 26:483-495. [PMID: 35759118 PMCID: PMC9411091 DOI: 10.1007/s40291-022-00600-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Autism spectrum disorder is an increasingly prevalent neurodevelopmental disorder in the world today, with an estimated 2% of the population being affected in the USA. A major complicating factor in diagnosing, treating, and understanding autism spectrum disorder is that defining the disorder is solely based on the observation of behavior. Thus, recent research has focused on identifying specific biological abnormalities in autism spectrum disorder that can provide clues to diagnosis and treatment. Biomarkers are an objective way to identify and measure biological abnormalities for diagnostic purposes as well as to measure changes resulting from treatment. This current opinion paper discusses the state of research of various biomarkers currently in development for autism spectrum disorder. The types of biomarkers identified include prenatal history, genetics, neurological including neuroimaging, neurophysiologic, and visual attention, metabolic including abnormalities in mitochondrial, folate, trans-methylation, and trans-sulfuration pathways, immune including autoantibodies and cytokine dysregulation, autonomic nervous system, and nutritional. Many of these biomarkers have promising preliminary evidence for prenatal and post-natal pre-symptomatic risk assessment, confirmation of diagnosis, subtyping, and treatment response. However, most biomarkers have not undergone validation studies and most studies do not investigate biomarkers with clinically relevant comparison groups. Although the field of biomarker research in autism spectrum disorder is promising, it appears that it is currently in the early stages of development.
Collapse
Affiliation(s)
- Amanda R Jensen
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Alison L Lane
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Brianna A Werner
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Sallie E McLees
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA
| | - Tessa S Fletcher
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard E Frye
- Section on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children's Hospital, 1919 E Thomas Rd, Phoenix, AZ, 85016, USA.
| |
Collapse
|
9
|
Gill PS, Dweep H, Rose S, Wickramasinghe PJ, Vyas KK, McCullough S, Porter-Gill PA, Frye RE. Integrated microRNA–mRNA Expression Profiling Identifies Novel Targets and Networks Associated with Autism. J Pers Med 2022; 12:jpm12060920. [PMID: 35743705 PMCID: PMC9225282 DOI: 10.3390/jpm12060920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder (n = 10) and controls (n = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs (p ≤ 0.05). The top upregulated genes were GABRA4, AUTS2, and IL27, and the top upregulated miRNAs were hsa-miR-6813-3p, hsa-miR-221-5p, and hsa-miR-21-5p. The RT-qPCR analysis confirmed the sequencing results for randomly selected candidates: AUTS2, FMR1, PTEN, hsa-miR-15a-5p, hsa-miR-92a-3p, and hsa-miR-125b-5p. The functional enrichment analysis showed pathways involved in ASD control proliferation of neuronal cells, cell death of immune cells, epilepsy or neurodevelopmental disorders, WNT and PTEN signaling, apoptosis, and cancer. The integration of mRNA and miRNA sequencing profiles by miRWalk2.0 identified correlated changes in miRNAs and their targets’ expression. The integration analysis found significantly dysregulated miRNA–gene pairs in ASD. Overall, these findings suggest that mRNA and miRNA expression profiles in ASD are greatly altered in LCLs and reveal numerous miRNA–gene interactions that regulate critical pathways involved in the proliferation of neuronal cells, cell death of immune cells, and neuronal development.
Collapse
Affiliation(s)
- Pritmohinder S. Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
- Correspondence: ; Tel.: +1-501-364-2743
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA; (H.D.); (P.J.W.)
| | - Shannon Rose
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA;
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | | | - Kanan K. Vyas
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Sandra McCullough
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Patricia A. Porter-Gill
- Arkansas Children′s Research Institute, Little Rock, AR 72202, USA; (K.K.V.); (S.M.); (P.A.P.-G.)
| | - Richard E. Frye
- Barrow Neurological Institute at Phoenix Children′s Hospital, Phoenix, AZ 85016, USA;
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| |
Collapse
|
10
|
A Personalized Multidisciplinary Approach to Evaluating and Treating Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12030464. [PMID: 35330464 PMCID: PMC8949394 DOI: 10.3390/jpm12030464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder without a known cure. Current standard-of-care treatments focus on addressing core symptoms directly but have provided limited benefits. In many cases, individuals with ASD have abnormalities in multiple organs, including the brain, immune and gastrointestinal system, and multiple physiological systems including redox and metabolic systems. Additionally, multiple aspects of the environment can adversely affect children with ASD including the sensory environment, psychosocial stress, dietary limitations and exposures to allergens and toxicants. Although it is not clear whether these medical abnormalities and environmental factors are related to the etiology of ASD, there is evidence that many of these factors can modulate ASD symptoms, making them a potential treatment target for improving core and associated ASD-related symptoms and improving functional limitation. Additionally, addressing underlying biological disturbances that drive pathophysiology has the potential to be disease modifying. This article describes a systematic approach using clinical history and biomarkers to personalize medical treatment for children with ASD. This approach is medically comprehensive, making it attractive for a multidisciplinary approach. By concentrating on treatable conditions in ASD, it is possible to improve functional ability and quality of life, thus providing optimal outcomes.
Collapse
|
11
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
12
|
Bied A, Njuguna S, Satodiya R. Autism in a Child With X-linked Agammaglobulinemia. Cureus 2022; 14:e21951. [PMID: 35282518 PMCID: PMC8904032 DOI: 10.7759/cureus.21951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/05/2022] Open
Abstract
A growing evidence base has implicated immune dysfunction in the etiology of some cases of autism spectrum disorder. The precise relationship between immune disorders and autism spectrum disorder remains unclear. Herein we report a 14-year-old-male with agammaglobulinemia, who was diagnosed with autism spectrum disorder, and who has received exogenous immunoglobulins regularly for most of his life. This case study supports current theories implicating antibody deficiencies in some individuals with an autism spectrum disorder. Our case will add to the growing literature of understanding the connection between immune deficiencies in the pathogenesis of autism.
Collapse
|
13
|
Maltsev D. Результати ретроспективного аналізу застосування нормального внутрішньовенного імуноглобуліну людини у високій дозі для лікування імунозалежної енцефалопатії з клінічною картиною розладів аутистичного спектра в дітей з генетичним дефіцитом фолатного циклу. INTERNATIONAL NEUROLOGICAL JOURNAL 2022; 17:26-38. [DOI: 10.22141/2224-0713.17.8.2021.250818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Актуальність. Раніше неодноразово повідомлялося про ефективність внутрішньовенної імуноглобулінотерапії в деяких дітей з розладами аутистичного спектра (РАС) без уточнення критеріїв відбору потенційних респондентів на імунотерапію. Мета: оцінити ефективність і безпечність 6-місячного курсу високодозової імуноглобулінотерапії при імунозалежній енцефалопатії з клінічною картиною РАС у дітей з генетичним дефіцитом фолатного циклу (ГДФЦ). Матеріали та методи. Досліджувану групу (ДГ) ретроспективного аналізу становили 225 дітей віком від 2 до 9 років із РАС, асоційованим із ГДФЦ, які отримували імуноглобулін внутрішньовенно в дозі 2 г/кг/міс протягом 6 місяців. До контрольної групи (КГ) увійшли діти з РАС, асоційованим із ГДФЦ, з аналогічним розподілом за віком і статтю, які отримували лише немедикаментозну реабілітаційну підтримку. Методом полімеразної ланцюгової реакції з рестрикцією виявляли такі патогенні поліморфізми, як MTHFR 677 C>T, MTHFR 1298 A>C, MTRR A>G і MTR A>G у різних комбінаціях. Динаміку психіатричних симптомів оцінювали за шкалою Aberrant Behavior Checklist (ABC). Результати. Вірогідне покращення за шкалою ABC було досягнуто в 199 із 225 дітей ДГ (88% випадків; p < 0,05; Z < Z0,05). Паралельно відзначали позитивну динаміку інших клінічних проявів фенотипу ГДФЦ: PANS/PITANDS/PANDAS (у 27 із 32 % випадків; p < 0,05; Z < Z0,05), епілепсії (у 33 із 43% випадків; p < 0,05; Z < Z0,05) та шлунково-кишкового синдрому (у 69 із 82 % випадків; p < 0,05; Z< Z0,05). Позитивної динаміки з боку симптомів ураження пірамідного та мозочкового трактів зареєстровано не було (p > 0,05; Z > Z0,05). Досягнуто зниження загального герпесвірусного навантаження та збільшення абсолютної кількості природних кілерів (NK) у периферичній крові (p<0,05; Z < Z0,05). Майже повне зникнення МР-симптомів лейкоенцефалопатії спостерігалося в 69 із 88 % випадків у ДГ (p < 0,05; Z< Z0,05). Висновки. Внутрішньовенний імуноглобулін у високій дозі справляє комплексний полімодальний позитивний вплив на прояви ГДФЦ, включаючи РАС, екстрапірамідні порушення, обсесивно-компульсивний синдром, епілептиформну активність кори головного мозку, імунозапальне ураження кишечника, дефіцит NK-клітин і лейкоенцефалопатію.
Collapse
|
14
|
A Personalized Approach to Evaluating and Treating Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12020147. [PMID: 35207636 PMCID: PMC8877244 DOI: 10.3390/jpm12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
|
15
|
Eve M, Gandawijaya J, Yang L, Oguro-Ando A. Neuronal Cell Adhesion Molecules May Mediate Neuroinflammation in Autism Spectrum Disorder. Front Psychiatry 2022; 13:842755. [PMID: 35492721 PMCID: PMC9051034 DOI: 10.3389/fpsyt.2022.842755] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by restrictive and repetitive behaviors, alongside deficits in social interaction and communication. The etiology of ASD is largely unknown but is strongly linked to genetic variants in neuronal cell adhesion molecules (CAMs), cell-surface proteins that have important roles in neurodevelopment. A combination of environmental and genetic factors are believed to contribute to ASD pathogenesis. Inflammation in ASD has been identified as one of these factors, demonstrated through the presence of proinflammatory cytokines, maternal immune activation, and activation of glial cells in ASD brains. Glial cells are the main source of cytokines within the brain and, therefore, their activity is vital in mediating inflammation in the central nervous system. However, it is unclear whether the aforementioned neuronal CAMs are involved in modulating neuroimmune signaling or glial behavior. This review aims to address the largely unexplored role that neuronal CAMs may play in mediating inflammatory cascades that underpin neuroinflammation in ASD, primarily focusing on the Notch, nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) cascades. We will also evaluate the available evidence on how neuronal CAMs may influence glial activity associated with inflammation. This is important when considering the impact of environmental factors and inflammatory responses on ASD development. In particular, neural CAM1 (NCAM1) can regulate NF-κB transcription in neurons, directly altering proinflammatory signaling. Additionally, NCAM1 and contactin-1 appear to mediate astrocyte and oligodendrocyte precursor proliferation which can alter the neuroimmune response. Importantly, although this review highlights the limited information available, there is evidence of a neuronal CAM regulatory role in inflammatory signaling. This warrants further investigation into the role other neuronal CAM family members may have in mediating inflammatory cascades and would advance our understanding of how neuroinflammation can contribute to ASD pathology.
Collapse
Affiliation(s)
- Madeline Eve
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Liming Yang
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
16
|
Whiteley P, Marlow B, Kapoor RR, Blagojevic-Stokic N, Sala R. Autoimmune Encephalitis and Autism Spectrum Disorder. Front Psychiatry 2021; 12:775017. [PMID: 34975576 PMCID: PMC8718789 DOI: 10.3389/fpsyt.2021.775017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
The concept of "acquired autism" refers to the hypothesis that amongst the massive heterogeneity that encompasses autism spectrum disorder (ASD) there may be several phenotypes that are neither syndromic nor innate. Strong and consistent evidence has linked exposure to various pharmacological and infective agents with an elevated risk of a diagnosis of ASD including maternal valproate use, rubella and herpes encephalitis. Autoimmune encephalitis (AE) describes a group of conditions characterised by the body's immune system mounting an attack on healthy brain cells causing brain inflammation. The resultant cognitive, psychiatric and neurological symptoms that follow AE have also included ASD or autism-like traits and states. We review the current literature on AE and ASD. Drawing also on associated literature on autoimmune psychosis (AP) and preliminary evidence of a psychosis-linked subtype of ASD, we conclude that AE may either act as a potentially causative agent for ASD, and/or produce symptoms that could easily be mistaken for or misdiagnosed as autism. Further studies are required to discern the connection between AE and autism. Where autism is accompanied by regression and atypical onset patterns, it may be prudent to investigate whether a differential diagnosis of AE would be more appropriate.
Collapse
Affiliation(s)
| | - Ben Marlow
- Colchester Hospital, East Suffolk and North Essex NHS Foundation Trust, Colchester, United Kingdom
- The Synapse Centre for Neurodevelopment ESNEFT, Colchester, United Kingdom
| | - Ritika R. Kapoor
- Paediatric Endocrinology, Variety Club Children's Hospital, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Faculty of Medicine and Life Sciences, King's College London, London, United Kingdom
| | | | - Regina Sala
- Centre for Psychiatry, Wolfson Institute, Barts and The London School of Medicine and Dentistry Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
De Giacomo A, Gargano CD, Simone M, Petruzzelli MG, Pedaci C, Giambersio D, Margari L, Ruggieri M. B and T Immunoregulation: A New Insight of B Regulatory Lymphocytes in Autism Spectrum Disorder. Front Neurosci 2021; 15:732611. [PMID: 34776843 PMCID: PMC8581677 DOI: 10.3389/fnins.2021.732611] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction: Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by a complex pathogenesis, by impairment social communication and interaction, and may also manifest repetitive patterns of behavior. Many studies have recognized an alteration of the immune response as a major etiological component in ASDs. Despite this, it is still unclear the variation of the function of the immune response. Aim: Our aim is to investigate the levels of immunological markers in peripheral blood of children with ASD such as: regulatory B and T cells, memory B and natural killer (NK) cells. Materials and Methods: We assessed various subsets of immune cells in peripheral blood (regulatory B and T cells, B-cell memory and natural killer cells) by multi-parametric flow cytometric analysis in 26 ASD children compared to 16 healthy controls (HCs) who matched age and gender. Results: No significant difference was observed between B-cell memory and NK cells in ASDs and HCs. Instead, regulatory B cells and T cells were decreased (p < 0.05) in ASD subjects when compared to HCs. Discussion: Regulatory B and T cells have a strategic role in maintaining the immune homeostasis. Their functions have been associated with the development of multiple pathologies especially in autoimmune diseases. According to our study, the immunological imbalance of regulatory B and T cells may play a pivotal role in the evolution of the disease, as immune deficiencies could be related to the severity of the ongoing disorder.
Collapse
Affiliation(s)
- Andrea De Giacomo
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Concetta Domenica Gargano
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Marta Simone
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maria Giuseppina Petruzzelli
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Chiara Pedaci
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Donatella Giambersio
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Lucia Margari
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | - Maddalena Ruggieri
- Department of Basic Medical Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
18
|
Theoharides TC. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J Pers Med 2021; 11:860. [PMID: 34575637 PMCID: PMC8465360 DOI: 10.3390/jpm11090860] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
The prevalence of autism spectrum disorder (ASD) continues to increase, but no distinct pathogenesis or effective treatment are known yet. The presence of many comorbidities further complicates matters, making a personalized approach necessary. An increasing number of reports indicate that inflammation of the brain leads to neurodegenerative changes, especially during perinatal life, "short-circuiting the electrical system" in the amygdala that is essential for our ability to feel emotions, but also regulates fear. Inflammation of the brain can result from the stimulation of mast cells-found in all tissues including the brain-by neuropeptides, stress, toxins, and viruses such as SARS-CoV-2, leading to the activation of microglia. These resident brain defenders then release even more inflammatory molecules and stop "pruning" nerve connections, disrupting neuronal connectivity, lowering the fear threshold, and derailing the expression of emotions, as seen in ASD. Many epidemiological studies have reported a strong association between ASD and atopic dermatitis (eczema), asthma, and food allergies/intolerance, all of which involve activated mast cells. Mast cells can be triggered by allergens, neuropeptides, stress, and toxins, leading to disruption of the blood-brain barrier (BBB) and activation of microglia. Moreover, many epidemiological studies have reported a strong association between stress and atopic dermatitis (eczema) during gestation, which involves activated mast cells. Both mast cells and microglia can also be activated by SARS-CoV-2 in affected mothers during pregnancy. We showed increased expression of the proinflammatory cytokine IL-18 and its receptor, but decreased expression of the anti-inflammatory cytokine IL-38 and its receptor IL-36R, only in the amygdala of deceased children with ASD. We further showed that the natural flavonoid luteolin is a potent inhibitor of the activation of both mast cells and microglia, but also blocks SARS-CoV-2 binding to its receptor angiotensin-converting enzyme 2 (ACE2). A treatment approach should be tailored to each individual patient and should address hyperactivity/stress, allergies, or food intolerance, with the introduction of natural molecules or drugs to inhibit mast cells and microglia, such as liposomal luteolin.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, 136 Harrison Avenue, Suite 304, Boston, MA 02111, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
- Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02111, USA
| |
Collapse
|