1
|
Patil R, Ashraf F, Abu Dayeh S, Prakash SK. Development and Assessment of a Point-of-Care Application (Genomic Medicine Guidance) for Heritable Thoracic Aortic Disease. JMIRX MED 2024; 5:e55903. [PMID: 39378357 PMCID: PMC11478091 DOI: 10.2196/55903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 10/10/2024]
Abstract
Background Genetic testing can determine familial and personal risks for heritable thoracic aortic aneurysms and dissections (TAD). The 2022 American College of Cardiology/American Heart Association guidelines for TAD recommend management decisions based on the specific gene mutation. However, many clinicians lack sufficient comfort or insight to integrate genetic information into clinical practice. Objective We therefore developed the Genomic Medicine Guidance (GMG) application, an interactive point-of-care tool to inform clinicians and patients about TAD diagnosis, treatment, and surveillance. GMG is a REDCap-based application that combines publicly available genetic data and clinical recommendations based on the TAD guidelines into one translational education tool. Methods TAD genetic information in GMG was sourced from the Montalcino Aortic Consortium, a worldwide collaboration of TAD centers of excellence, and the National Institutes of Health genetic repositories ClinVar and ClinGen. Results The application streamlines data on the 13 most frequently mutated TAD genes with 2286 unique pathogenic mutations that cause TAD so that users receive comprehensive recommendations for diagnostic testing, imaging, surveillance, medical therapy, and preventative surgical repair, as well as guidance for exercise safety and management during pregnancy. The application output can be displayed in a clinician view or exported as an informative pamphlet in a patient-friendly format. Conclusions The overall goal of the GMG application is to make genomic medicine more accessible to clinicians and patients while serving as a unifying platform for research. We anticipate that these features will be catalysts for collaborative projects aiming to understand the spectrum of genetic variants contributing to TAD.
Collapse
Affiliation(s)
- Rohan Patil
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Fatima Ashraf
- McWilliams School of Bioinformatics, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Samer Abu Dayeh
- Department of Internal Medicine, John P and Kathrine G McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Siddharth K Prakash
- Department of Internal Medicine, John P and Kathrine G McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
2
|
Johnson D, Del Fiol G, Kawamoto K, Romagnoli KM, Sanders N, Isaacson G, Jenkins E, Williams MS. Genetically guided precision medicine clinical decision support tools: a systematic review. J Am Med Inform Assoc 2024; 31:1183-1194. [PMID: 38558013 PMCID: PMC11031215 DOI: 10.1093/jamia/ocae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVES Patient care using genetics presents complex challenges. Clinical decision support (CDS) tools are a potential solution because they provide patient-specific risk assessments and/or recommendations at the point of care. This systematic review evaluated the literature on CDS systems which have been implemented to support genetically guided precision medicine (GPM). MATERIALS AND METHODS A comprehensive search was conducted in MEDLINE and Embase, encompassing January 1, 2011-March 14, 2023. The review included primary English peer-reviewed research articles studying humans, focused on the use of computers to guide clinical decision-making and delivering genetically guided, patient-specific assessments, and/or recommendations to healthcare providers and/or patients. RESULTS The search yielded 3832 unique articles. After screening, 41 articles were identified that met the inclusion criteria. Alerts and reminders were the most common form of CDS used. About 27 systems were integrated with the electronic health record; 2 of those used standards-based approaches for genomic data transfer. Three studies used a framework to analyze the implementation strategy. DISCUSSION Findings include limited use of standards-based approaches for genomic data transfer, system evaluations that do not employ formal frameworks, and inconsistencies in the methodologies used to assess genetic CDS systems and their impact on patient outcomes. CONCLUSION We recommend that future research on CDS system implementation for genetically GPM should focus on implementing more CDS systems, utilization of standards-based approaches, user-centered design, exploration of alternative forms of CDS interventions, and use of formal frameworks to systematically evaluate genetic CDS systems and their effects on patient care.
Collapse
Affiliation(s)
- Darren Johnson
- Department of Genomic Health, Geisinger Health Systems, Danville, PA 17822, United States
| | - Guilherme Del Fiol
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, United States
| | - Kensaku Kawamoto
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, United States
| | - Katrina M Romagnoli
- Department of Genomic Health, Geisinger Health Systems, Danville, PA 17822, United States
| | - Nathan Sanders
- School of Medicine, Geisinger Health Systems, Danville, PA 17822, United States
| | - Grace Isaacson
- Family Medicine, Penn Highlands Healthcare, DuBois, PA 16830, United States
| | - Elden Jenkins
- School of Medicine, Noorda College of Osteopathic Medicine, Provo, UT 84606, United States
| | - Marc S Williams
- Department of Genomic Health, Geisinger Health Systems, Danville, PA 17822, United States
| |
Collapse
|
3
|
Patil R, Ashraf F, Dayeh SA, Prakash SK. Genomic Medicine Guidance: A Point-of-Care App for Heritable Thoracic Aortic Diseases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23299696. [PMID: 38234729 PMCID: PMC10793513 DOI: 10.1101/2023.12.22.23299696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Genetic testing can determine familial and personal risks for heritable thoracic aortic aneurysms and dissections (TAD). The 2022 ACC/AHA guidelines for TAD recommend management decisions based on the specific gene mutation. However, many clinicians lack sufficient comfort or insight to integrate genetic information into clinical practice. We therefore developed the Genomic Medicine Guidance (GMG) app, an interactive point-of care tool to inform clinicians and patients about TAD diagnosis, treatment, and surveillance. GMG is a REDCap-based app that combines publicly available genetic data and clinical recommendations based on the TAD guidelines into one translational education tool. TAD genetic information in GMG was sourced from the Montalcino Aortic Consortium, a worldwide collaboration of TAD centers of excellence, and the NIH genetic repositories ClinVar and ClinGen. The app streamlines data on the 13 most frequently mutated TAD genes with 2,286 unique pathogenic mutations that cause TAD so that users receive comprehensive recommendations for diagnostic testing, imaging, surveillance, medical therapy, preventative surgical repair, as well as guidance for exercise safety and management during pregnancy. The app output can be displayed in a clinician view or exported as an informative pamphlet in a patient-friendly format. The overall goal of the GMG app is to make genomic medicine more accessible to clinicians and patients, while serving as a unifying platform for research. We anticipate that these features will be catalysts for collaborative projects that aim to understand the spectrum of genetic variants that contribute to TAD.
Collapse
Affiliation(s)
- Rohan Patil
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fatima Ashraf
- McWilliams School of Bioinformatics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Samer Abu Dayeh
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth K. Prakash
- Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Nabi SU, Rehman MU, Arafah A, Taifa S, Khan IS, Khan A, Rashid S, Jan F, Wani HA, Ahmad SF. Treatment of Autism Spectrum Disorders by Mitochondrial-targeted Drug: Future of Neurological Diseases Therapeutics. Curr Neuropharmacol 2023; 21:1042-1064. [PMID: 36411568 PMCID: PMC10286588 DOI: 10.2174/1570159x21666221121095618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Autism is a neurodevelopmental disorder with a complex etiology that might involve environmental and genetic variables. Recently, some epidemiological studies conducted in various parts of the world have estimated a significant increase in the prevalence of autism, with 1 in every 59 children having some degree of autism. Since autism has been associated with other clinical abnormalities, there is every possibility that a sub-cellular component may be involved in the progression of autism. The organelle remains a focus based on mitochondria's functionality and metabolic role in cells. Furthermore, the mitochondrial genome is inherited maternally and has its DNA and organelle that remain actively involved during embryonic development; these characteristics have linked mitochondrial dysfunction to autism. Although rapid stride has been made in autism research, there are limited studies that have made particular emphasis on mitochondrial dysfunction and autism. Accumulating evidence from studies conducted at cellular and sub-cellular levels has indicated that mitochondrial dysfunction's role in autism is more than expected. The present review has attempted to describe the risk factors of autism, the role of mitochondria in the progression of the disease, oxidative damage as a trigger point to initiate mitochondrial damage, genetic determinants of the disease, possible pathogenic pathways and therapeutic regimen in vogue and the developmental stage. Furthermore, in the present review, an attempt has been made to include the novel therapeutic regimens under investigation at different clinical trial stages and their potential possibility to emerge as promising drugs against ASD.
Collapse
Affiliation(s)
- Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Taifa
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Iqra Shafi Khan
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST-K), Srinagar J&K, 190006, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Fatimah Jan
- Department of Pharmaceutical Sciences, CT University, Ludhiana, Ferozepur Road, Punjab, 142024, India
| | - Hilal Ahmad Wani
- Department of Biochemistry, Government Degree College Sumbal, Bandipora, J&K, India
| | - Sheikh Fayaz Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Hausman-Cohen S, Bilich C, Kapoor S, Maristany E, Stefani A, Wilcox A. Genomics as a Clinical Decision Support Tool for Identifying and Addressing Modifiable Causes of Cognitive Decline and Improving Outcomes: Proof of Concept Support for This Personalized Medicine Strategy. Front Aging Neurosci 2022; 14:862362. [PMID: 35517054 PMCID: PMC9062132 DOI: 10.3389/fnagi.2022.862362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
The landscape of therapeutics for mild cognitive impairment and dementia is quite limited. While many single-agent trials of pharmaceuticals have been conducted, these trials have repeatedly been unable to show improvement in cognition. It is hypothesized that because Alzheimer’s, like many other chronic illnesses, is not a monogenic illness, but is instead caused by the downstream effects of an individual’s genetic variants interacting with each other, the environment, and lifestyle, that improving outcomes will require a personalized, precision medicine approach. This approach requires identifying and then addressing contributing genomic and other factors specific to each individual in a simultaneous fashion. Until recently, the utility of genomics as part of clinical decision-making for Alzheimer’s and cognitive decline has been limited by the lack of availability of a genomic platform designed specifically to evaluate factors contributing to cognitive decline and how to respond to these factors The clinical decision support (CDS) platform used in the cases presented focuses on common variants that relate to topics including, but not limited to brain inflammation, amyloid processing, nutrient carriers, brain ischemia, oxidative stress, and detoxification pathways. Potential interventions based on the scientific literature were included in the CDS, but the final decision on what interventions to apply were chosen by each patient’s physician. Interventions included supplements with “generally regarded as safe (GRAS)” rating, along with targeted diet and lifestyle modifications. We hypothesize that a personalized genomically targeted approach can improve outcomes for individuals with mild cognitive impairment who are at high risk of Alzheimer’s. The cases presented in this report represent a subset of cases from three physicians’ offices and are meant to provide initial proof of concept data demonstrating the efficacy of this method and provide support for this hypothesis. These patients were at elevated risk for Alzheimer’s due to their apolipoprotein E ε4 status. While further prospective and controlled trials need to be done, initial case reports are encouraging and lend support to this hypothesis of the benefit of a genomically targeted personalized medicine approach to improve outcomes in individuals with cognitive decline who are at high risk for Alzheimer’s.
Collapse
|
6
|
Utilizing Genomically Targeted Molecular Data to Improve Patient-Specific Outcomes in Autism Spectrum Disorder. Int J Mol Sci 2022; 23:ijms23042167. [PMID: 35216282 PMCID: PMC8879068 DOI: 10.3390/ijms23042167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular biology combined with genomics can be a powerful tool for developing potential intervention strategies for improving outcomes in children with autism spectrum disorders (ASD). Monogenic etiologies rarely cause autism. Instead, ASD is more frequently due to many polygenic contributing factors interacting with each other, combined with the epigenetic effects of diet, lifestyle, and environment. One limitation of genomics has been identifying ways of responding to each identified gene variant to translate the information to something clinically useful. This paper will illustrate how understanding the function of a gene and the effects of a reported variant on a molecular level can be used to develop actionable and targeted potential interventions for a gene variant or combinations of variants. For illustrative purposes, this communication highlights a specific genomic variant, SHANK3. The steps involved in developing molecularly genomically targeted actionable interventions will be demonstrated. Cases will be shared to support the efficacy of this strategy and to show how clinicians utilized these targeted interventions to improve ASD-related symptoms significantly. The presented approach demonstrates the utility of genomics as a part of clinical decision-making.
Collapse
|
7
|
A Personalized Approach to Evaluating and Treating Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12020147. [PMID: 35207636 PMCID: PMC8877244 DOI: 10.3390/jpm12020147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
|