1
|
Sullivan KMC, Vilalta M, Ertl LS, Wang Y, Dunlap C, Ebsworth K, Zhao BN, Li S, Zeng Y, Miao Z, Fan P, Mali V, Lange C, McMurtrie D, Yang J, Lui R, Scamp R, Chhina V, Kumamoto A, Yau S, Dang T, Easterday A, Liu S, Miao S, Charo I, Schall TJ, Zhang P. CCX559 is a potent, orally-administered small molecule PD-L1 inhibitor that induces anti-tumor immunity. PLoS One 2023; 18:e0286724. [PMID: 37285333 DOI: 10.1371/journal.pone.0286724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The interaction of PD-L1 with PD-1 is a major immune checkpoint that limits effector T cell function against cancer cells; monoclonal antibodies that block this pathway have been approved in multiple tumor indications. As a next generation therapy, small molecule inhibitors of PD-L1 have inherent drug properties that may be advantageous for certain patient populations compared to antibody therapies. In this report we present the pharmacology of the orally-available, small molecule PD-L1 inhibitor CCX559 for cancer immunotherapy. CCX559 potently and selectively inhibited PD-L1 binding to PD-1 and CD80 in vitro, and increased activation of primary human T cells in a T cell receptor-dependent fashion. Oral administration of CCX559 demonstrated anti-tumor activity similar to an anti-human PD-L1 antibody in two murine tumor models. Treatment of cells with CCX559 induced PD-L1 dimer formation and internalization, which prevented interaction with PD-1. Cell surface PD-L1 expression recovered in MC38 tumors upon CCX559 clearance post dosing. In a cynomolgus monkey pharmacodynamic study, CCX559 increased plasma levels of soluble PD-L1. These results support the clinical development of CCX559 for solid tumors; CCX559 is currently in a Phase 1, first in patient, multicenter, open-label, dose-escalation study (ACTRN12621001342808).
Collapse
Affiliation(s)
| | - Marta Vilalta
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Linda S Ertl
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Yu Wang
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Carolyn Dunlap
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Karen Ebsworth
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Bin N Zhao
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Shijie Li
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Yibin Zeng
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Zhenhua Miao
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Pingchen Fan
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Venkat Mali
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Christopher Lange
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Darren McMurtrie
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Ju Yang
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Rebecca Lui
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Ryan Scamp
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Vicky Chhina
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Alice Kumamoto
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Simon Yau
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Ton Dang
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Ashton Easterday
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Shirley Liu
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Shichang Miao
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Israel Charo
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Thomas J Schall
- ChemoCentryx, Inc., San Carlos, California, United States of America
| | - Penglie Zhang
- ChemoCentryx, Inc., San Carlos, California, United States of America
| |
Collapse
|
2
|
Yang Y, Liu H, Chen Y, Xiao N, Zheng Z, Liu H, Wan J. Liquid biopsy on the horizon in immunotherapy of non-small cell lung cancer: current status, challenges, and perspectives. Cell Death Dis 2023; 14:230. [PMID: 37002211 PMCID: PMC10066332 DOI: 10.1038/s41419-023-05757-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the most threatening malignancies to human health and life. In most cases, patients with NSCLC are already at an advanced stage when they are diagnosed. In recent years, lung cancer has made great progress in precision therapy, but the efficacy of immunotherapy is unstable, and its response rate varies from patient to patient. Several biomarkers have been proposed to predict the outcomes of immunotherapy, such as programmed cell death-ligand 1 (PD-L1) expression and tumor mutational burden (TMB). Nevertheless, the detection assays are invasive and demanding on tumor tissue. To effectively predict the outcomes of immunotherapy, novel biomarkers are needed to improve the performance of conventional biomarkers. Liquid biopsy is to capture and detect circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) and exosomes in body fluids, such as blood, saliva, urine, pleural fluid and cerebrospinal fluid as samples from patients, so as to make analysis and diagnosis of cancer and other diseases. The application of liquid biopsy provides a new possible solution, as it has several advantages such as non-invasive, real-time dynamic monitoring, and overcoming tumor heterogeneity. Liquid biopsy has shown predictive value in immunotherapy, significantly improving the precision treatment of lung cancer patients. Herein, we review the application of liquid biopsy in predicting the outcomes of immunotherapy in NSCLC patients, and discuss the challenges and future directions in this field.
Collapse
Affiliation(s)
- Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nan Xiao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoyang Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Hongchun Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:102-138. [PMID: 36937316 PMCID: PMC10017193 DOI: 10.37349/etat.2023.00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/13/2022] [Indexed: 03/06/2023] Open
Abstract
Liquid biopsy is a diagnostic repeatable test, which in last years has emerged as a powerful tool for profiling cancer genomes in real-time with minimal invasiveness and tailoring oncological decision-making. It analyzes different blood-circulating biomarkers and circulating tumor DNA (ctDNA) is the preferred one. Nevertheless, tissue biopsy remains the gold standard for molecular evaluation of solid tumors whereas liquid biopsy is a complementary tool in many different clinical settings, such as treatment selection, monitoring treatment response, cancer clonal evolution, prognostic evaluation, as well as the detection of early disease and minimal residual disease (MRD). A wide number of technologies have been developed with the aim of increasing their sensitivity and specificity with acceptable costs. Moreover, several preclinical and clinical studies have been conducted to better understand liquid biopsy clinical utility. Anyway, several issues are still a limitation of its use such as false positive and negative results, results interpretation, and standardization of the panel tests. Although there has been rapid development of the research in these fields and recent advances in the clinical setting, many clinical trials and studies are still needed to make liquid biopsy an instrument of clinical routine. This review provides an overview of the current and future clinical applications and opening questions of liquid biopsy in different oncological settings, with particular attention to ctDNA liquid biopsy.
Collapse
Affiliation(s)
- Vincenza Caputo
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Carminia Maria Della Corte
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Giulia Martini
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Napoli, Italy
| |
Collapse
|
4
|
Goh KY, Cheng TYD, Tham SC, Lim DWT. Circulating Biomarkers for Prediction of Immunotherapy Response in NSCLC. Biomedicines 2023; 11:508. [PMID: 36831044 PMCID: PMC9953588 DOI: 10.3390/biomedicines11020508] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) constitutes the majority of the lung cancer population and the prognosis is poor. In recent years, immunotherapy has become the standard of care for advanced NSCLC patients as numerous trials demonstrated that immune checkpoint inhibitors (ICI) are more efficacious than conventional chemotherapy. However, only a minority of NSCLC patients benefit from this treatment. Therefore, there is an unmet need for biomarkers that could accurately predict response to immunotherapy. Liquid biopsy allows repeated sampling of blood-based biomarkers in a non-invasive manner for the dynamic monitoring of treatment response. In this review, we summarize the efforts and progress made in the identification of circulating biomarkers that predict immunotherapy benefit for NSCLC patients. We also discuss the challenges with future implementation of circulating biomarkers into clinical practice.
Collapse
Affiliation(s)
- Kah Yee Goh
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Terence You De Cheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore
| | - Su Chin Tham
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore
| | - Darren Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, Singapore
- Office of Academic and Clinical Development, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
5
|
Calabrese F, Pezzuto F, Lunardi F, Fortarezza F, Tzorakoleftheraki SE, Resi MV, Tiné M, Pasello G, Hofman P. Morphologic-Molecular Transformation of Oncogene Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:4164. [PMID: 35456982 PMCID: PMC9031930 DOI: 10.3390/ijms23084164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Patients with non-small cell lung cancer, especially adenocarcinomas, harbour at least one oncogenic driver mutation that can potentially be a target for therapy. Treatments of these oncogene-addicted tumours, such as the use of tyrosine kinase inhibitors (TKIs) of mutated epidermal growth factor receptor, have dramatically improved the outcome of patients. However, some patients may acquire resistance to treatment early on after starting a targeted therapy. Transformations to other histotypes-small cell lung carcinoma, large cell neuroendocrine carcinoma, squamous cell carcinoma, and sarcomatoid carcinoma-have been increasingly recognised as important mechanisms of resistance and are increasingly becoming a topic of interest for all specialists involved in the diagnosis, management, and care of these patients. This article, after examining the most used TKI agents and their main biological activities, discusses histological and molecular transformations with an up-to-date review of all previous cases published in the field. Liquid biopsy and future research directions are also briefly discussed to offer the reader a complete and up-to-date overview of the topic.
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | | | - Maria Vittoria Resi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.V.R.); (G.P.)
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCSS, Padova, 35128 Padova, Italy
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.V.R.); (G.P.)
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCSS, Padova, 35128 Padova, Italy
| | - Paul Hofman
- Laboratoire de Pathologie Clinique et Expérimentale, FHU OncoAge, Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France;
| |
Collapse
|