1
|
Vaitaitis GM, Wagner DH. Slow Subcutaneous Release of Glatiramer Acetate or CD40-Targeting Peptide KGYY 6 Is More Advantageous in Treating Ongoing Experimental Autoimmune Encephalomyelitis. Neurol Int 2024; 16:1540-1551. [PMID: 39585073 PMCID: PMC11587089 DOI: 10.3390/neurolint16060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One of the first-line disease-modifying treatments of multiple sclerosis (MS) is Glatiramer Acetate (GA), which requires daily or three-times-weekly subcutaneous injections. Disease progression, while slowed, still occurs with time. Increasing the impact of the treatment while decreasing the frequency of injections would be ideal. The mechanism of action of GA remains undefined. We developed an alternate approach, KGYY6, whose mechanism of action targets the CD40 receptor with promising results in an Experimental Autoimmune Encephalomyelitis (EAE) model. METHODS GA and a CD40-targeting peptide, KGYY6, were formulated as slow-release particles used to treat EAE in C57BL/6 mice. RESULTS Compared to liquid formulations, the particle formulations vastly improved drug efficacy in both cases, which would be advantageous in treating MS. GA is a combination of randomly generated peptides, in the size range of 5000-9000 Da, using the amino acids E, A, Y, and K. This approach introduces batch differences that impacts efficacy, a persistent problem with GA. KGYY6 is generated in a controlled process and has a motif, K-YY, which could be generated when manufacturing GA. When testing two different lots of GA or KGYY6, the latter performed equally well across lots, while GA did not. CONCLUSIONS Slow-release formulations of both GA and KGYY6 vastly improve the efficacy of both, and KGYY6 is more consistent in efficacy across different lots.
Collapse
Affiliation(s)
| | - David H. Wagner
- Webb-Waring Center, Department of Medicine, University of Colorado, Anschutz Medical Campus, 12850 E Montview Boulevard, Aurora, CO 80045, USA;
| |
Collapse
|
2
|
Wu Y, Song J, Liu M, Ma H, Zhang J. Integrating GWAS and proteome data to identify novel drug targets for MU. Sci Rep 2023; 13:10437. [PMID: 37369724 DOI: 10.1038/s41598-023-37177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Mouth ulcers have been associated with numerous loci in genome wide association studies (GWAS). Nonetheless, it remains unclear what mechanisms are involved in the pathogenesis of mouth ulcers at these loci, as well as what the most effective ulcer drugs are. Thus, we aimed to screen hub genes responsible for mouth ulcer pathogenesis. We conducted an imputed/in-silico proteome-wide association study to discover candidate genes that impact the development of mouth ulcers and affect the expression and concentration of associated proteins in the bloodstream. The integrative analysis revealed that 35 genes play a significant role in the development of mouth ulcers, both in terms of their protein and transcriptional levels. Following this analysis, the researchers identified 6 key genes, namely BTN3A3, IL12B, BPI, FAM213A, PLXNB2, and IL22RA2, which were related to the onset of mouth ulcers. By combining with multidimensional data, six genes were found to correlate with mouth ulcer pathogenesis, which can be useful for further biological and therapeutic research.
Collapse
Affiliation(s)
- Yadong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Manyi Liu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Ma
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, China.
| | - Junmei Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, 550002, China.
| |
Collapse
|
3
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Basile MS, Bramanti P, Mazzon E. The Role of Cytotoxic T-Lymphocyte Antigen 4 in the Pathogenesis of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081319. [PMID: 35893056 PMCID: PMC9394409 DOI: 10.3390/genes13081319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune neurodegenerative disorder of the central nervous system that presents heterogeneous clinical manifestations and course. It has been shown that different immune checkpoints, including Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), can be involved in the pathogenesis of MS. CTLA-4 is a critical regulator of T-cell homeostasis and self-tolerance and represents a key inhibitor of autoimmunity. In this scopingreview, we resume the current preclinical and clinical studies investigating the role of CTLA-4 in MS with different approaches. While some of these studies assessed the expression levels of CTLA-4 on T cells by comparing MS patients with healthy controls, others focused on the evaluation of the effects of common MS therapies on CTLA-4 modulation or on the study of the CTLA-4 blockade or deficiency in experimental autoimmune encephalomyelitis models. Moreover, other studies in this field aimed to discover if the CTLA-4 gene might be involved in the predisposition to MS, whereas others evaluated the effects of treatment with CTLA4-Ig in MS. Although these results are of great interest, they are often conflicting. Therefore, further studies are needed to reveal the exact mechanisms underlying the action of a crucial immune checkpoint such as CTLA-4 in MS to identify novel immunotherapeutic strategies for MS patients.
Collapse
|
5
|
Boziki M, Bakirtzis C, Sintila SA, Kesidou E, Gounari E, Ioakimidou A, Tsavdaridou V, Skoura L, Fylaktou A, Nikolaidou V, Stangou M, Nikolaidis I, Giantzi V, Karafoulidou E, Theotokis P, Grigoriadis N. Ocrelizumab in Patients with Active Primary Progressive Multiple Sclerosis: Clinical Outcomes and Immune Markers of Treatment Response. Cells 2022; 11:cells11121959. [PMID: 35741088 PMCID: PMC9222195 DOI: 10.3390/cells11121959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Ocrelizumab is a B-cell-depleting monoclonal antibody approved for the treatment of relapsing-remitting multiple sclerosis (RRMS) and active primary progressive MS (aPPMS). This prospective, uncontrolled, open-label, observational study aimed to assess the efficacy of ocrelizumab in patients with aPPMS and to dissect the clinical, radiological and laboratory attributes of treatment response. In total, 22 patients with aPPMS followed for 24 months were included. The primary efficacy outcome was the proportion of patients with optimal response at 24 months, defined as patients free of relapses, free of confirmed disability accumulation (CDA) and free of T1 Gd-enhancing lesions and new/enlarging T2 lesions on the brain and cervical MRI. In total, 14 (63.6%) patients and 13 patients (59.1%) were classified as responders at 12 and 24 months, respectively. Time exhibited a significant effect on mean absolute and normalized gray matter cerebellar volume (F = 4.342, p = 0.23 and F = 4.279, p = 0.024, respectively). Responders at 24 months exhibited reduced peripheral blood ((%) of CD19+ cells) plasmablasts compared to non-responders at the 6-month point estimate (7.69 ± 4.4 vs. 22.66 ± 7.19, respectively, p = 0.043). Response to ocrelizumab was linked to lower total and gray matter cerebellar volume loss over time. Reduced plasmablast depletion was linked for the first time to sub-optimal response to ocrelizumab in aPPMS.
Collapse
Affiliation(s)
- Marina Boziki
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Styliani-Aggeliki Sintila
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Evdoxia Gounari
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Aliki Ioakimidou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Vasiliki Tsavdaridou
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Lemonia Skoura
- Microbiology Laboratory, Department of Immunology, AHEPA University Hospital, 54636 Thessaloniki, Greece; (E.G.); (A.I.); (V.T.); (L.S.)
| | - Asimina Fylaktou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Vasiliki Nikolaidou
- National Peripheral Histocompatibility Center, Immunology Department, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (V.N.)
| | - Maria Stangou
- Department of Nephrology, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Ioannis Nikolaidis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Virginia Giantzi
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Eleni Karafoulidou
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Paschalis Theotokis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center of the 2nd Neurological University Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA General University Hospital, 54636 Thessaloniki, Greece; (M.B.); (C.B.); (S.-A.S.); (E.K.); (I.N.); (V.G.); (E.K.); (P.T.)
- Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
6
|
Longoria V, Parcel H, Toma B, Minhas A, Zeine R. Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination. Biomedicines 2022; 10:539. [PMID: 35327341 PMCID: PMC8945692 DOI: 10.3390/biomedicines10030539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and toxin-induced demyelination models. Study selection and data extraction were performed by 3 reviewers, and 28 studies were selected for inclusion. The certainty of evidence was appraised using the Cochrane GRADE approach. In clinical studies, there was low- and moderate-quality evidence that treatment with ~1:1 CBD/THC mixtures as a nabiximols (Sativex®) oromucosal spray reduced numerical rating scale (NRS) scores for spasticity, pain, and sleep disturbance, diminished bladder overactivity, and decreased proinflammatory cytokine and transcription factor expression levels. Preclinical studies demonstrated decreases in disease severity, hindlimb stiffness, motor function, neuroinflammation, and demyelination. Other experimental systems showed the capacity of cannabinoids to promote remyelination in vitro and by electron microscopy. Modest short-term benefits were realized in MS responders to adjunctive therapy with CBD/THC mixtures. Future studies are recommended to investigate the cellular and molecular mechanisms of cannabinoid effects on MS lesions and to evaluate whether medical marijuana can accelerate remyelination and retard the accrual of disability over the long term.
Collapse
Affiliation(s)
- Victor Longoria
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Hannah Parcel
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Bameelia Toma
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Annu Minhas
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Rana Zeine
- School of Natural Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|