1
|
Dou Y, Ren Y, Zhao X, Jin J, Xiong S, Luo L, Xu X, Yang X, Yu J, Guo L, Liang T. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference. Comput Biol Med 2024; 170:108066. [PMID: 38310806 DOI: 10.1016/j.compbiomed.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2023] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Synthetic lethality (SL) occurs when the inactivation of two genes results in cell death while the inactivation of either gene alone is non-lethal. SL-based therapy has become a promising anti-cancer treatment option with the increasing researches and applications in clinical practice, while the specific therapeutic opportunities for various cancers have not yet been comprehensively investigated. Herein, we described a computational approach based on machine learning and statistical inference to discover the cancer-specific synthetic lethal interactions. First, Random Forest and One-Class SVM were used to perform cancer unbiased prediction of synthetic lethality. Then, two strategies, including mutual exclusivity and differential expression, were used to screen cancer-specific synthetic lethal interactions, resulting in 14,582 SL gene pairs in 33 cancer types. Finally, we developed a freely available database of CSSLdb (Cancer Specific Synthetic Lethality Database, http://www.tmliang.cn/CSSL/) to present cancer-specific synthetic lethal genetic interactions, which would enrich the relevant research and contribute to underlying therapy strategies based on synthetic lethality.
Collapse
Affiliation(s)
- Yuyang Dou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lulu Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xinru Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiafeng Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Liu Z, Jing C, Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J Ovarian Res 2024; 17:39. [PMID: 38347608 PMCID: PMC10860311 DOI: 10.1186/s13048-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Ovarian clear-cell cancer is a rare subtype of epithelial ovarian cancer with unique clinical and biological features. Despite optimal cytoreductive surgery and platinum-based chemotherapy being the standard of care, most patients experience drug resistance and a poor prognosis. Therefore, novel therapeutic approaches have been developed, including immune checkpoint blockade, angiogenesis-targeted therapy, ARID1A synthetic lethal interactions, targeting hepatocyte nuclear factor 1β, and ferroptosis. Refining predictive biomarkers can lead to more personalized medicine, identifying patients who would benefit from chemotherapy, targeted therapy, or immunotherapy. Collaboration between academic research groups is crucial for developing prognostic outcomes and conducting clinical trials to advance treatment for ovarian clear-cell cancer. Immediate progress is essential, and research efforts should prioritize the development of more effective therapeutic strategies to benefit all patients.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
3
|
Schäffer AA, Chung Y, Kammula AV, Ruppin E, Lee JS. A systematic analysis of the landscape of synthetic lethality-driven precision oncology. MED 2024; 5:73-89.e9. [PMID: 38218178 DOI: 10.1016/j.medj.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Synthetic lethality (SL) denotes a genetic interaction between two genes whose co-inactivation is detrimental to cells. Because more than 25 years have passed since SL was proposed as a promising way to selectively target cancer vulnerabilities, it is timely to comprehensively assess its impact so far and discuss its future. METHODS We systematically analyzed the literature and clinical trial data from the PubMed and Trialtrove databases to portray the preclinical and clinical landscape of SL oncology. FINDINGS We identified 235 preclinically validated SL pairs and found 1,207 pertinent clinical trials, and the number keeps increasing over time. About one-third of these SL clinical trials go beyond the typically studied DNA damage response (DDR) pathway, testifying to the recently broadening scope of SL applications in clinical oncology. We find that SL oncology trials have a greater success rate than non-SL-based trials. However, about 75% of the preclinically validated SL interactions have not yet been tested in clinical trials. CONCLUSIONS Dissecting the recent efforts harnessing SL to identify predictive biomarkers, novel therapeutic targets, and effective combination therapy, our systematic analysis reinforces the hope that SL may serve as a key driver of precision oncology going forward. FUNDING Funded by the Samsung Research Funding & Incubation Center of Samsung Electronics, the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Republic of Korea government (MSIT), the Kwanjeong Educational Foundation, the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), and Center for Cancer Research (CCR).
Collapse
Affiliation(s)
- Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Youngmin Chung
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ashwin V Kammula
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Joo Sang Lee
- Department of Artificial Intelligence, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Digital Health & Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| |
Collapse
|
4
|
Staheli JP, Neal ML, Navare A, Mast FD, Aitchison JD. Predicting host-based, synthetic lethal antiviral targets from omics data. NAR MOLECULAR MEDICINE 2024; 1:ugad001. [PMID: 38994440 PMCID: PMC11233254 DOI: 10.1093/narmme/ugad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 07/13/2024]
Abstract
Traditional antiviral therapies often have limited effectiveness due to toxicity and the emergence of drug resistance. Host-based antivirals are an alternative, but can cause nonspecific effects. Recent evidence shows that virus-infected cells can be selectively eliminated by targeting synthetic lethal (SL) partners of proteins disrupted by viral infection. Thus, we hypothesized that genes depleted in CRISPR knockout (KO) screens of virus-infected cells may be enriched in SL partners of proteins altered by infection. To investigate this, we established a computational pipeline predicting antiviral SL drug targets. First, we identified SARS-CoV-2-induced changes in gene products via a large compendium of omics data. Second, we identified SL partners for each altered gene product. Last, we screened CRISPR KO data for SL partners required for cell viability in infected cells. Despite differences in virus-induced alterations detected by various omics data, they share many predicted SL targets, with significant enrichment in CRISPR KO-depleted datasets. Our comparison of SARS-CoV-2 and influenza infection data revealed potential broad-spectrum, host-based antiviral SL targets. This suggests that CRISPR KO data are replete with common antiviral targets due to their SL relationship with virus-altered states and that such targets can be revealed from analysis of omics datasets and SL predictions.
Collapse
Affiliation(s)
- Jeannette P Staheli
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Maxwell L Neal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Arti Navare
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| |
Collapse
|
5
|
Zangene E, Marashi SA, Montazeri H. SL-scan identifies synthetic lethal interactions in cancer using metabolic networks. Sci Rep 2023; 13:15763. [PMID: 37737478 PMCID: PMC10516981 DOI: 10.1038/s41598-023-42992-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
Exploiting synthetic lethality is a promising strategy for developing targeted cancer therapies. However, identifying clinically significant synthetic lethal (SL) interactions among a large number of gene combinations is a challenging computational task. In this study, we developed the SL-scan pipeline based on metabolic network modeling to discover SL interaction. The SL-scan pipeline identifies the association between simulated Flux Balance Analysis knockout scores and mutation data across cancer cell lines and predicts putative SL interactions. We assessed the concordance of the SL pairs predicted by SL-scan with those of obtained from analysis of the CRISPR, shRNA, and PRISM datasets. Our results demonstrate that the SL-scan pipeline outperformed existing SL prediction approaches based on metabolic networks in identifying SL pairs in various cancers. This study emphasizes the importance of integrating multiple data sources, particularly mutation data, when identifying SL pairs for targeted cancer therapies. The findings of this study may lead to the development of novel targeted cancer therapies.
Collapse
Affiliation(s)
- Ehsan Zangene
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Hesam Montazeri
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|