1
|
Gehlhaar P, Schaper-Gerhardt K, Gutzmer R, Hasler F, Röhn TA, Werfel T, Mommert S. Histamine and TH2 cytokines regulate the biosynthesis of cysteinyl-leukotrienes and expression of their receptors in human mast cells. Inflamm Res 2025; 74:32. [PMID: 39890627 PMCID: PMC11785601 DOI: 10.1007/s00011-024-01974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION In skin lesions of atopic dermatitis (AD), a chronic inflammatory skin disease, mast cells beyond other immune cells are present in increasing numbers. Upon activation, mast cells release a plethora of mediators, in particular histamine and leukotrienes, as well as chemokines and cytokines, which modulate the immune response of cells in their microenvironment and may influence mast cells in an autocrine loop. This study investigated the effects of histamine and TH2 cytokines on the biosynthesis of cysteinyl leukotrienes (CysLTs) as well as CysLT receptor expression on human mast cells from healthy volunteers and patients with AD. METHODS Human mast cells were generated from CD34+ progenitor cells from peripheral blood. The cultured mast cells were stimulated with IL-4, IL-13, histamine and different histamine receptor selective ligands. Expression of enzymes in the biosynthesis of leukotrienes and expression of CysLT receptors were quantified by real-time PCR. The release of CysLTs was measured by ELISA. RESULTS Mast cells from AD patients showed higher expression of 5-Lipoxygenase (5-LO) and 5-Lipoxygenase activating protein (FLAP) compared to mast cells from healthy volunteers at baseline and in presence of histamine and TH2 cytokines. Expression of leukotriene C4 synthase (LTC4S), the biosynthesis of CysLTs, and mRNA expression of both CysLT receptors were induced by histamine and TH2 cytokines in mast cells from healthy volunteers and AD patients. CONCLUSION We provide evidence that in an acute allergic situation histamine and TH2 cytokines may activate the biosynthesis of pro-allergic cysteinyl leukotrienes and up-regulation of CysLT receptor expression in human mast cells. This suggests a novel mechanism for sustaining mast cell activation through a possible autocrine signalling loop under these conditions.
Collapse
Affiliation(s)
- Patricia Gehlhaar
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Katrin Schaper-Gerhardt
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Franziska Hasler
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Yeni Y, Genc S, Ertugrul MS, Nadaroglu H, Gezer A, Mendil AS, Hacımuftuoglu A. Neuroprotective effects of L-Dopa-modified zinc oxide nanoparticles on the rat model of 6-OHDA-ınduced Parkinson's disease. Sci Rep 2024; 14:19077. [PMID: 39154054 PMCID: PMC11330516 DOI: 10.1038/s41598-024-69324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative case. As the disease progresses, the response time to doses of levodopa (L-Dopa) becomes shorter and the effects of the drug are severely limited by some undesirable side effects such as the 'on-off' phenomenon. In several diseases, including Parkinson's, nanoparticles can deliver antioxidant compounds that reduce oxidative stress. This study evaluates and compares the neuroprotective effects of L-Dopa-modified zinc nanoparticles (ZnNPs) in the 6-hydroxydopamine (6-OHDA)-induced PD rat model. For this purpose, the synthesis of NPs was carried out. Scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectrophotometer were used for characterization. The rats were randomized into 9 experimental groups: control, lesion group (6-OHDA), 6-OHDA + 5 mg/kg L-Dopa, 6-OHDA + 10 mg/kg L-Dopa, 6-OHDA + 20 mg/kg L-Dopa, 6-OHDA + 20 mg/kg ZnNPs, 6-OHDA + 40 mg/kg ZnNPs, 6-OHDA + 30 mg/kg ZnNPs + L-Dopa, and 6-OHDA + 60 mg/kg ZnNPs + L-Dopa. Behavioral tests were performed on all groups 14 days after treatment. Phosphatase and tensin homolog, Excitatory amino acid transporter 1/2, and Glutamine synthetase gene analyses were performed on brain samples taken immediately after the tests. In addition, histological and immunohistochemical methods were used to determine the general structure and properties of the tissues. We obtained important findings that L-Dopa-modified ZnNPs increased the activity of glutamate transporters. Our experiment showed that glutamate increases neuronal cell vitality and improves behavioral performance. Therefore, L-Dopa-modified ZnNPs can be used to prevent neurotoxicity. According to what we found, results show that L-Dopa-modified ZnNPs will lend to the effective avoidance and therapy of PD.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210, Battalgazi, Malatya, Turkey.
| | - Sıdıka Genc
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Muhammed Sait Ertugrul
- Department of Food, Feed and Medicine, Hemp Research Institute, Ondokuz Mayıs University, Samsun, Turkey
| | - Hayrunnisa Nadaroglu
- Department of Food Technology, Vocational College of Technical Science, Ataturk University, 25240, Erzurum, Turkey
| | - Arzu Gezer
- Department of Health Care Services, Vocational School of Health Services, Ataturk University, 25240, Erzurum, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Ahmet Hacımuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
3
|
Genc S, Yagci T, Vageli DP, Dundar R, Doukas PG, Doukas SG, Tolia M, Chatzakis N, Tsatsakis A, Taghizadehghalehjoughi A. Exosomal MicroRNA-223, MicroRNA-146, and MicroRNA-21 Profiles and Biochemical Changes in Laryngeal Cancer. ACS Pharmacol Transl Sci 2023; 6:820-828. [PMID: 37200807 PMCID: PMC10186621 DOI: 10.1021/acsptsci.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 05/20/2023]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most aggressive cancers, and its early diagnosis is urgent. Exosomes are believed to have diagnostic significance in cancer. However, the role of serum exosomal microRNAs, miR-223, miR-146, and miR-21, and phosphatase and tensin homologue (PTEN) and hemoglobin subunit delta (HBD) mRNAs in LSCC is unclear. Exosomes were isolated from the blood serum of 10 LSCC patients and 10 healthy controls to perform scanning electron microscopy and liquid chromatography quadrupole time-of-flight mass spectrometry analyses to characterize them and to undergo reverse transcription polymerase chain reaction to identify miR-223, miR-146, miR-21, and PTEN and HBD mRNA expression phenotypes. Biochemical parameters, including serum C-reactive protein (CRP) and vitamin B12, were also obtained. Serum exosomes of 10-140 nm were isolated from LSCC and controls. Serum exosomal miR-223, miR-146, and PTEN were found to be significantly decreased (p < 0.05), in contrast to serum exosomal miRNA-21 (p < 0.01), and serum vitamin B12 and CRP (p < 0.05) were found to be significantly increased, in LSCC vs controls. Our novel data show that the combination of reduced serum exosomal miR-223, miR-146, and miR-21 profiles and biochemical alterations in CRP and vitamin B12 levels may be useful indicators of LSCC that could be validated by large studies. Our findings also suggest a possible negative regulatory effect of miR-21 on PTEN in LSCC, encouraging a more extensive investigation of its role.
Collapse
Affiliation(s)
- Sidika Genc
- Faculty
of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| | - Tarik Yagci
- Faculty
of Medicine, Department of ENT, Bilecik
Seyh Edebali University, Bilecik 11230, Turkey
| | - Dimitra P. Vageli
- Yale
Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Riza Dundar
- Faculty
of Medicine, Department of ENT, Bilecik
Seyh Edebali University, Bilecik 11230, Turkey
| | - Panagiotis G. Doukas
- Yale
Larynx Laboratory, Department of Surgery (Otolaryngology), Yale School of Medicine, New Haven, Connecticut 06510, United States
| | - Sotirios G. Doukas
- Department
of Internal Medicine, Division of Gastroenterology and Hepatology, Saint Peter University Hospital, New Brunswick New Jersey 08901-1780, United States
- Department
of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Maria Tolia
- Department
of Radiology, Faculty of Medicine, University
of Crete, 71003 Heraklion, Greece
| | - Nikolaos Chatzakis
- Otorhinolaryngologist
Consultant, ENT Department of University
Hospital of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department
of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Faculty
of Medicine, Department of Medical Pharmacology, Bilecik Seyh Edebali University, Bilecik 11230, Turkey
| |
Collapse
|
4
|
Cicek B, Hacimuftuoglu A, Yeni Y, Danisman B, Ozkaraca M, Mokhtare B, Kantarci M, Spanakis M, Nikitovic D, Lazopoulos G, Tsarouhas K, Tsatsakis A, Taghizadehghalehjoughi A. Chlorogenic Acid Attenuates Doxorubicin-Induced Oxidative Stress and Markers of Apoptosis in Cardiomyocytes via Nrf2/HO-1 and Dityrosine Signaling. J Pers Med 2023; 13:jpm13040649. [PMID: 37109035 PMCID: PMC10140899 DOI: 10.3390/jpm13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Doxorubicin (DOX) is extensively used for cancer treatments; however, its clinical application is limited because of its cardiotoxic adverse effects. A combination of DOX and agents with cardioprotective properties is an effective strategy to ameliorate DOX-related cardiotoxicity. Polyphenolic compounds are ideal for the investigation of novel cardioprotective agents. Chlorogenic acid (CGA), an essential dietary polyphenol found in plants, has been previously reported to exert antioxidant, cardioprotective, and antiapoptotic properties. The current research evaluated CGA's in vivo cardioprotective properties in DOX-induced cardiotoxicity and the probable mechanisms underlying this protection. (2) Methods: CGA's cardioprotective properties were investigated in rats that were treated with CGA (100 mg/kg, p.o.) for fourteen days. The experimental model of cardiotoxicity was induced with a single intraperitoneal (15 mg/kg i.p.) injection of DOX on the 10th day. (3) Results: Treatment with CGA significantly improved the DOX-caused altered cardiac damage markers (LDH, CK-MB, and cTn-T), and a marked improvement in cardiac histopathological features accompanied this. DOX downregulated the expression of Nrf2/HO-1 signaling pathways, and the CGA reversed this effect. Consistently, caspase-3, an apoptotic-related marker, and dityrosine expression were suppressed, while Nrf2 and HO-1 expressions were elevated in the cardiac tissues of DOX-treated rats after treatment with the CGA. Furthermore, the recovery was confirmed by the downregulation of 8-OHdG and dityrosine (DT) expressions in immunohistochemical findings. (4) Conclusions: CGA demonstrated a considerable cardioprotective effect against DOX-induced cardiotoxicity. One of the possible mechanisms for these protective properties was the upregulation of the Nrf2/HO-1-dependent pathway and the downregulation of DT, which may ameliorate oxidative stress and cardiomyocyte apoptosis. These findings suggest that CGA may be cardioprotective, particularly in patients receiving DOX-based chemotherapy.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey
| | - Betul Danisman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mecit Kantarci
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Dragana Nikitovic, Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios Lazopoulos
- Department of Cardiac Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
5
|
Wang T, Zhen Q, Wu T, Jin L, Yao S, Feng Y, Chen J, Chen C, Huang Z. Gamma-Aminobutyric Acid Type A Receptor Subunit Pi is a potential chemoresistance regulator in colorectal cancer. Mol Biol Rep 2023; 50:3167-3177. [PMID: 36696022 DOI: 10.1007/s11033-023-08268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the cancers with high morbidity and mortality worldwide. Chemotherapy is commonly used for metastatic or more advanced CRC. The mechanism of CRC chemoresistance is still under active investigation. Therefore, we identify and validate differentially expressed genes (DEGs) between oxaliplatin/5-FU resistant and sensitive CRC cells. METHODS AND RESULTS Three datasets of colorectal cancer patients (GSE28691, GSE81006, and GSE77932) from the Gene Expression Omnibus (GEO) database were analyzed and volcano plots for DEGs were generated using the GEO2R tool. The intersection of three GEO datasets showed that GABRP was significantly upregulated in chemo-resistant CRC cells or patients with an adjusted p-value less than 0.01. The potential protein-protein interaction (PPI) network with GABRP was analyzed by the Search Tool for the Retrieval of Interaction Gene/Proteins (STRING) website. The PPI network predicted ANKRD66, CLINT1, HAP1, PLCL1, GABARPAP, GABARAPL1, NSF, GABARAPL2, TRAK2, and CLIC3 had a high likelihood to interact with GABRP. Especially, GABARAP, GABARAPL1, ANKRD66, CLINT1, and CLIC3 were enriched as the most possibly associated proteins with GABRP among the networks. GABRP was significantly more expressed in both oxaliplatin/5-FU resistant CRC cells than in those counterpart sensitive CRC cells using quantitative PCR (qPCR) analysis. Consistently, TCGA, Oncomine, and Human Protein Atlas (HPA) databases confirmed that higher expression of GABRP was robustly found in CRC patients than those in other various cancer types or normal colon tissues. CONCLUSION We identify GABRP as a promising drug target to mediate oxaliplatin or 5-FU resistance in CRC. It provided the theoretical basis and potential clinical value for CRC patients.
Collapse
Affiliation(s)
- Tengyu Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qinghao Zhen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Tong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lan Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuyang Feng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chen Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Danisman B, Cicek B, Yildirim S, Bolat I, Kantar D, Golokhvast KS, Nikitovic D, Tsatsakis A, Taghizadehghalehjoughi A. Carnosic Acid Ameliorates Indomethacin-Induced Gastric Ulceration in Rats by Alleviating Oxidative Stress and Inflammation. Biomedicines 2023; 11:829. [PMID: 36979808 PMCID: PMC10045571 DOI: 10.3390/biomedicines11030829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/19/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin and indomethacin (IND) are the most commonly prescribed for inflammation or pain. However, widespread use causes several adverse effects, such as gastric ulcers, upper gastric system bleeding, and erosions. Carnosic acid (CA) is an important natural antioxidant found in rosemary (Rosmarinus essentials) and exhibits a protective effect by suppressing oxidative stress and inflammation. This study aimed to investigate the impact of CA on IND-induced gastric ulceration. Wistar male rats received CA (100 mg/kg) or esomeprazole (ESP) (20 mg/kg, standard drug) by oral gavage for 14 days, after that gastric ulceration was induced by oral administration of 100 mg/kg IND. CA pretreatment attenuated both gross morphological lesions and histopathological alterations. CA strongly reduced IND-induced oxidative stress, verified by a decrease in MDA (p < 0.001) and TOS levels (p < 0.05). Furthermore, an IND-dependent increase in CAT (p < 0.001) and GPx (p < 0.01) activities, as well as a reduction in GSH levels (p < 0.01), were ameliorated by CA pretreatment. CA also attenuated inflammatory damage by suppressing IL-1β (p < 0.01), IL-6 (p < 0.01), and TNFα (p < 0.001) production and increasing Nrf2/HO-1 (p < 0.05) expressions. In conclusion, CA shows a gastroprotective effect by reducing oxidative stress and attenuating inflammation.
Collapse
Affiliation(s)
- Betul Danisman
- Department of Biophysics, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan 24100, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum 25240, Turkey
| | - Deniz Kantar
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Kirill S. Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnology, Centralnaya, Presidium, Krasnoobsk 633501, Russia
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, Bilecik 11000, Turkey
| |
Collapse
|
7
|
Zahra N, Iqbal J, Arif M, Abbasi BA, Sher H, Nawaz AF, Yaseen T, Ydyrys A, Sharifi-Rad J, Calina D. A comprehensive review on traditional uses, phytochemistry and pharmacological properties of Paeonia emodi Wall. ex Royle: current landscape and future perspectives. Chin Med 2023; 18:23. [PMID: 36859262 PMCID: PMC9979516 DOI: 10.1186/s13020-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Paeonia emodi Wall. ex Royle is commonly known as Himalayan paeony has great importance as a food and medicine. The practice of Paeonia emodi Wall. ex Royle is very ancient and it is conventionally used for a wide range of illnesses in the folk system of medicine because of its wide beneficial phytochemical profile. The main purpose of the current review was the synthesis of recent data on botany, ethnopharmacology, phytochemistry and potential pharmacological mechanisms of action of Paeonia emodi Wall. ex Royle, thus offering new prospects for the development of new adjuvant natural therapies. Using scientific databases such as PubMed/MedLine, Scopus, Web of Science, ScienceDirect, Google Scholar, Springer, and Wiley, a comprehensive literature search was performed for Paeonia emodi Wall. ex Royle. For searching, we used the next MeSH terms: "Biological Product/isolation and purification", "Biological Products/pharmacology", "Drug Discovery/methods", "Ethnopharmacology, Medicine", "Traditional/methods", "Paeonia/chemistry", "Plant Extracts/pharmacology", "Phytochemicals/chemistry", "Phytochemicals/pharmacology", "Plants, Medicinal". The results of the most recent studies were analyzed and the most important data were summarized in tables and figures. Phytochemical research of Paeonia emodi Wall. ex Royle has led to the isolation of triterpenes, monoterpenes, phenolic acids, fatty acids, organic compounds, steroids, free radicals and some other classes of primary metabolites. In addition, diverse pharmacological activities like antibacterial, antifungal, anticoagulant, airway relaxant lipoxygenase and beta-glucuronidase inhibiting activity, radical scavenging activity, phytotoxic and insecticidal activities have been reported for Paeonia emodi Wall. ex Royle. Different bioactive compounds of Paeonia emodi Wall. ex Royle has proven their therapeutic potential in modern pharmacological and biomedical research to cure numerous gastrointestinal and nervous disorders. In future, further in vitro and in vivo therapeutic studies are required to identify new mechanisms of action, pharmacokinetics studies, and new pharmaceutical formulations for target transport and possible interaction with allopathic drugs. Also, new research regarding quality evaluation, toxicity and safety data in humans is needed.
Collapse
Affiliation(s)
- Nida Zahra
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Muhammad Arif
- Department of Biotechnology, University of Mianwali, Mianwali, 42200 Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300 Pakistan
| | - Hassan Sher
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201 Pakistan
| | - Ayesha Fazal Nawaz
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center (NARC), Park Road, Islamabad, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa Pakistan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, 050040 Almaty, Kazakhstan
- The Elliott School of International Affairs, George Washington University, 1957 E St NW, Washington, DC 20052 USA
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
8
|
Fe 3O 4 Nanoparticles in Combination with 5-FU Exert Antitumor Effects Superior to Those of the Active Drug in a Colon Cancer Cell Model. Pharmaceutics 2023; 15:pharmaceutics15010245. [PMID: 36678874 PMCID: PMC9865889 DOI: 10.3390/pharmaceutics15010245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
(1) Background: Colon cancer is one of the most common cancer types, and treatment options, unfortunately, do not continually improve the survival rate of patients. With the unprecedented development of nanotechnologies, nanomedicine has become a significant direction in cancer research. Indeed, chemotherapeutics with nanoparticles (NPs) in cancer treatment is an outstanding new treatment principle. (2) Methods: Fe3O4 NPs were synthesized and characterized. Caco-2 colon cancer cells were treated during two different periods (24 and 72 h) with Fe3O4 NPs (6 μg/mL), various concentrations of 5-FU (4−16 μg/mL), and Fe3O4 NPs in combination with 5-FU (4−16 μg/mL) (Fe3O4 NPs + 5-FU). (3) Results: The MTT assay showed that treating the cells with Fe3O4 NPs + 5-FU at 16 µg/mL for 24 or 72 h decreased cell viability and increased their LDH release (p < 0.05 and p < 0.01, respectively). Furthermore, at the same treatment concentrations, total antioxidant capacity (TAC) was decreased (p < 0.05 and p < 0.01, respectively), and total oxidant status (TOS) increased (p < 0.05 and p < 0.01, respectively). Moreover, after treatment with Fe3O4-NPs + 5-FU, the IL-10 gene was downregulated and PTEN gene expression was upregulated (p < 0.05 and p < 0.01, respectively) compared with those of the control. (4) Conclusions: Fe3O4 NPs exert a synergistic cytotoxic effect with 5-FU on Caco-2 cells at concentrations below the active drug threshold levels.
Collapse
|
9
|
Hu G, Zhang M, Wang Y, Yu M, Zhou Y. Potential of Heterogeneous Compounds as Antidepressants: A Narrative Review. Int J Mol Sci 2022; 23:ijms232213776. [PMID: 36430254 PMCID: PMC9692659 DOI: 10.3390/ijms232213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/30/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Depression is a globally widespread disorder caused by a complicated interplay of social, psychological, and biological factors. Approximately 280 million people are suffering from depression worldwide. Traditional frontline antidepressants targeting monoamine neurotransmitters show unsatisfactory effects. The development and application of novel antidepressants for dissimilar targets are on the agenda. This review characterizes the antidepressant effects of multiple endogenous compounds and/or their targets to provide new insight into the working mechanism of antidepressants. We also discuss perspectives and challenges for the generation of novel antidepressants.
Collapse
Affiliation(s)
- Gonghui Hu
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Meng Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| | - Yuyang Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ming Yu
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Correspondence:
| |
Collapse
|
10
|
Asgharian P, Quispe C, Herrera-Bravo J, Sabernavaei M, Hosseini K, Forouhandeh H, Ebrahimi T, Sharafi-Badr P, Tarhriz V, Soofiyani SR, Helon P, Rajkovic J, Durna Daştan S, Docea AO, Sharifi-Rad J, Calina D, Koch W, Cho WC. Pharmacological effects and therapeutic potential of natural compounds in neuropsychiatric disorders: An update. Front Pharmacol 2022; 13:926607. [PMID: 36188551 PMCID: PMC9521271 DOI: 10.3389/fphar.2022.926607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropsychiatric diseases are a group of disorders that cause significant morbidity and disability. The symptoms of psychiatric disorders include anxiety, depression, eating disorders, autism spectrum disorders (ASD), attention-deficit/hyperactivity disorder, and conduct disorder. Various medicinal plants are frequently used as therapeutics in traditional medicine in different parts of the world. Nowadays, using medicinal plants as an alternative medication has been considered due to their biological safety. Despite the wide range of medications, many patients are unable to tolerate the side effects and eventually lose their response. By considering the therapeutic advantages of medicinal plants in the case of side effects, patients may prefer to use them instead of chemical drugs. Today, the use of medicinal plants in traditional medicine is diverse and increasing, and these plants are a precious heritage for humanity. Investigation about traditional medicine continues, and several studies have indicated the basic pharmacology and clinical efficacy of herbal medicine. In this article, we discuss five of the most important and common psychiatric illnesses investigated in various studies along with conventional therapies and their pharmacological therapies. For this comprehensive review, data were obtained from electronic databases such as MedLine/PubMed, Science Direct, Web of Science, EMBASE, DynaMed Plus, ScienceDirect, and TRIP database. Preclinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common psychiatric disorders. The mechanisms of action of the analyzed biocompounds are presented in detail. The bioactive compounds analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in the pharmacotherapy of neuropsychiatric diseases. Although comparative studies have been carefully reviewed in the preclinical pharmacology field, no clinical studies have been found to confirm the efficacy of herbal medicines compared to FDA-approved medicines for the treatment of mental disorders. Therefore, future clinical studies are needed to accelerate the potential use of natural compounds in the management of these diseases.
Collapse
Affiliation(s)
- Parina Asgharian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mahsa Sabernavaei
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haleh Forouhandeh
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ebrahimi
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paria Sharafi-Badr
- Department of Pharmacognosy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahideh Tarhriz
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Infectious and Tropical Diseases Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paweł Helon
- Branch in Sandomierz, Jan Kochanowski University of Kielce, Sandomierz, Poland
| | - Jovana Rajkovic
- Medical Faculty, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, Sivas, Turkey
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Wojciech Koch
- Department of Food and Nutrition, Medical University of Lublin, Lublin, Poland
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Amin R, Quispe C, Docea AO, Alibek Y, Kulbayeva M, Durna Daştan S, Calina D, Sharifi-Rad J. The role of Tumour Necrosis Factor in neuroinflammation associated with Parkinson's disease and targeted therapies. Neurochem Int 2022; 158:105376. [PMID: 35667491 DOI: 10.1016/j.neuint.2022.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders Parkinson's disease is a progressive neurodegenerative disorder associated with neuroinflammatory responses that lead to the neurodegeneration of the dopaminergic neurons. These neuroinflammatory mechanisms involve various cytokines produced by the activated glial cells. Tumour Necrosis factor α (TNF α) is one of the major mediators of the neuroinflammation associated with neurodegeneration. TNF α has a dual role of neuroprotection and neurotoxicity in the brain. The effective pathways of TNF involve various signalling pathways transduced by the receptors TNFR1 and TNFR2. Effective therapeutic strategies have been produced targeting the neurotoxic behaviour of the Tumour Necrosis Factor and the associated neurodegeneration which includes the use of Dominant Negative Tumour Necrosis Factor (DN-TNF) inhibitors like XENP 345 and XPro®1595 and peroxisome proliferator receptor gamma (PPAR-γ) agonists.
Collapse
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science, Assam Down Town University, Panikhaiti, Guwahati, Assam, India.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, 1110939, Chile.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ydyrys Alibek
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Marzhan Kulbayeva
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey; Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|