1
|
Chopra P, Fatima A, Mohapatra S, Murugaiyan K, Vemuganti GK, Rengan AK, Watson SL, Singh V, Basu S, Singh S. Extracellular vesicles in dry eye disease and Sjögren's syndrome: A systematic review on their diagnostic and therapeutic role. Surv Ophthalmol 2025; 70:499-515. [PMID: 39818361 DOI: 10.1016/j.survophthal.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Extracellular vesicles (EVs), defined as membrane-bound vesicles released from all cells, are being explored for their diagnostic and therapeutic role in dry eye disease (DED). We systematically shortlisted 32 articles on the role of EVs in diagnosing and treating DED. We cover the progress in the last 2 decades on the classification and isolation of EVs and their role in DED. The diagnostic predictability of exosomes was evaluated in Sjögren syndrome (SS) patients' tears, plasma, and saliva, where upregulation of inflammatory proteins was reported uniformly across studies. Also, we evaluate the therapeutic effects of MSC-derived EVs in in vitro and in vivo studies of SS and DED mouse models. A significant response occurs at a functional level with improved tear production and saliva flow rate and at a cellular level with reduced lymphocyte infiltration, improved corneal structural integrity, decreased epithelial cell apoptosis, and dampening of the inflammatory cytokine response. The proposed mechanisms of EV action include PD-L1, PRDM, NLRP-3, and Nf-kb pathways, and an increase in M2 macrophage phenotype. Current use of exosomes in DED is limited due to their cumbersome isolation techniqus. Further research on human subjects is needed, in addition to optimizing exosome isolation and delivery methods.
Collapse
Affiliation(s)
- Prakshi Chopra
- Sydney Eye Hospital, Sydney, Australia; The University of Sydney, Australia
| | - Asra Fatima
- School of Medical Sciences, University of Hyderabad, India
| | - Sonali Mohapatra
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Kavipriya Murugaiyan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Vivek Singh
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sayan Basu
- Brien Holden Centre for Eye Research (BHERC), L V Prasad Eye Institute, Hyderabad, Telangana, India; Shantilal Shanghvi Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Swati Singh
- Centre for Ocular Regeneration (CORE), L V Prasad Eye Institute, Hyderabad, Telangana, India; Prof. Krothapalli Ravindranath Ophthalmic Research Biorepository, LV Prasad Eye Institute, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Vivas AJ, Boumediene S, Tobón GJ. Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence. Autoimmun Rev 2024; 23:103611. [PMID: 39209014 DOI: 10.1016/j.autrev.2024.103611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Autoimmune diseases comprise a spectrum of disorders characterized by the dysregulation of immune tolerance, resulting in tissue or organ damage and inflammation. Their prevalence has been on the rise, significantly impacting patients' quality of life and escalating healthcare costs. Consequently, the prediction of autoimmune diseases has recently garnered substantial interest among researchers. Despite their wide heterogeneity, many autoimmune diseases exhibit a consistent pattern of paraclinical findings that hold predictive value. From serum biomarkers to various machine learning approaches, the array of available methods has been continuously expanding. The emergence of artificial intelligence (AI) presents an exciting new range of possibilities, with notable advancements already underway. The ultimate objective should revolve around disease prevention across all levels. This review provides a comprehensive summary of the most recent data pertaining to the prediction of diverse autoimmune diseases and encompasses both traditional biomarkers and the latest innovations in AI.
Collapse
Affiliation(s)
| | - Synda Boumediene
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America
| | - Gabriel J Tobón
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America; Department of Internal Medicine, Division of Rheumatology, Southern Illinois University-School of Medicine, Springfield, IL, United States of America.
| |
Collapse
|
3
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 3-therapeutic + diagnostic potential in dentistry. Periodontol 2000 2024; 94:415-482. [PMID: 38546137 DOI: 10.1111/prd.12557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 05/18/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of various diseases. Over 5000 publications are currently being published on this topic yearly, many of which in the dental space. This extensive review article is the first scoping review aimed at summarizing all therapeutic uses of exosomes in regenerative dentistry. A total of 944 articles were identified as using exosomes in the dental field for either their regenerative/therapeutic potential or for diagnostic purposes derived from the oral cavity. In total, 113 research articles were selected for their regenerative potential (102 in vitro, 60 in vivo, 50 studies included both). Therapeutic exosomes were most commonly derived from dental pulps, periodontal ligament cells, gingival fibroblasts, stem cells from exfoliated deciduous teeth, and the apical papilla which have all been shown to facilitate the regenerative potential of a number of tissues including bone, cementum, the periodontal ligament, nerves, aid in orthodontic tooth movement, and relieve temporomandibular joint disorders, among others. Results demonstrate that the use of exosomes led to positive outcomes in 100% of studies. In the bone field, exosomes were found to perform equally as well or better than rhBMP2 while significantly reducing inflammation. Periodontitis animal models were treated with simple gingival injections of exosomes and benefits were even observed when the exosomes were administered intravenously. Exosomes are much more stable than growth factors and were shown to be far more resistant against degradation by periodontal pathogens found routinely in a periodontitis environment. Comparative studies in the field of periodontal regeneration found better outcomes for exosomes even when compared to their native parent stem cells. In total 47 diagnostic studies revealed a role for salivary/crevicular fluid exosomes for the diagnosis of birth defects, cardiovascular disease, diabetes, gingival recession detection, gingivitis, irritable bowel syndrome, neurodegenerative disease, oral lichen planus, oral squamous cell carcinoma, oropharyngeal cancer detection, orthodontic root resorption, pancreatic cancer, periodontitis, peri-implantitis, Sjögren syndrome, and various systemic diseases. Hence, we characterize the exosomes as possessing "remarkable" potential, serving as a valuable tool for clinicians with significant advantages.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
- Advanced PRF Education, Venice, Florida, USA
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
5
|
Wu KY, Serhan O, Faucher A, Tran SD. Advances in Sjögren's Syndrome Dry Eye Diagnostics: Biomarkers and Biomolecules beyond Clinical Symptoms. Biomolecules 2024; 14:80. [PMID: 38254680 PMCID: PMC10812982 DOI: 10.3390/biom14010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Sjögren's syndrome dry eye (SSDE) is a subset of Sjögren's syndrome marked by dry eye symptoms that is distinct from non-Sjögren's syndrome dry eye (NSSDE). As SSDE can lead to severe complications, its early detection is imperative. However, the differentiation between SSDE and NSSDE remains challenging due to overlapping clinical manifestations. This review endeavors to give a concise overview of the classification, pathophysiology, clinical features and presentation, ocular and systemic complications, clinical diagnosis, and management of SSDE. Despite advancements, limitations in current diagnostic methods underscore the need for novel diagnostic modalities. Thus, the current review examines various diagnostic biomarkers utilized for SSDE identification, encompassing serum, salivary, and tear analyses. Recent advancements in proteomic research and exosomal biomarkers offer promising diagnostic potential. Through a comprehensive literature review spanning from 2016 to 2023, we highlight molecular insights and advanced diagnostic modalities that have the potential to enhance our understanding and diagnosis of SSDE.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.); (A.F.)
| | - Olivia Serhan
- Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Anne Faucher
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.); (A.F.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
6
|
Ren J, Jing X, Liu Y, Liu J, Ning X, Zong M, Zhang R, Cheng H, Cui J, Li B, Wu X. Exosome-based engineering strategies for the diagnosis and treatment of oral and maxillofacial diseases. J Nanobiotechnology 2023; 21:501. [PMID: 38129853 PMCID: PMC10740249 DOI: 10.1186/s12951-023-02277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oral and maxillofacial diseases are one of the most prevalent diseases in the world, which not only seriously affect the health of patients' oral and maxillofacial tissues, but also bring serious economic and psychological burdens to patients. Therefore, oral and maxillofacial diseases require effective treatment. Traditional treatments have limited effects. In recent years, nature exosomes have attracted increasing attention due to their ability to diagnose and treat diseases. However, the application of nature exosomes is limited due to low yield, high impurities, lack of targeting, and high cost. Engineered exosomes can be endowed with better comprehensive therapeutic properties by modifying exosomes of parent cells or directly modifying exosomes, and biomaterial loading exosomes. Compared with natural exosomes, these engineered exosomes can achieve more effective diagnosis and treatment of oral and maxillary system diseases, and provide reference and guidance for clinical application. This paper reviews the engineering modification methods of exosomes and the application of engineered exosomes in oral and maxillofacial diseases and looks forward to future research directions.
Collapse
Affiliation(s)
- Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jinrong Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Xiao Ning
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiayu Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Habibi A, Zarei-Behjani Z, Falamarzi K, Malekpour M, Ebrahimi F, Soleimani M, Nejabat M, Khosravi A, Moayedfard Z, Pakbaz S, Dehdari Ebrahimi N, Azarpira N. Extracellular vesicles as a new horizon in the diagnosis and treatment of inflammatory eye diseases: A narrative review of the literature. Front Immunol 2023; 14:1097456. [PMID: 36969177 PMCID: PMC10033955 DOI: 10.3389/fimmu.2023.1097456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Extracellular vesicles include exosomes, microvesicles, and apoptotic bodies. Their cargos contain a diverse variety of lipids, proteins, and nucleic acids that are involved in both normal physiology and pathology of the ocular system. Thus, studying extracellular vesicles may lead to a more comprehensive understanding of the pathogenesis, diagnosis, and even potential treatments for various diseases. The roles of extracellular vesicles in inflammatory eye disorders have been widely investigated in recent years. The term "inflammatory eye diseases" refers to a variety of eye conditions such as inflammation-related diseases, degenerative conditions with remarkable inflammatory components, neuropathy, and tumors. This study presents an overview of extracellular vesicles' and exosomes' pathogenic, diagnostic, and therapeutic values in inflammatory eye diseases, as well as existing and potential challenges.
Collapse
Affiliation(s)
- Azam Habibi
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei-Behjani
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kimia Falamarzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Malekpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ebrahimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masood Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Nejabat
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Khosravi
- Department of Ophthalmology School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Moayedfard
- Department of Tissue Engineering and Cell Therapy, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Pathology, University of Toronto, Toronto, ON, Canada
| | | | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Wu KY, Kulbay M, Tanasescu C, Jiao B, Nguyen BH, Tran SD. An Overview of the Dry Eye Disease in Sjögren's Syndrome Using Our Current Molecular Understanding. Int J Mol Sci 2023; 24:1580. [PMID: 36675090 PMCID: PMC9866656 DOI: 10.3390/ijms24021580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Sjögren's syndrome is a chronic and insidious auto-immune disease characterized by lymphocyte infiltration of exocrine glands. The patients typically present with ocular surface diseases related to dry eye and other systemic manifestations. However, due to the high prevalence of dry eye disease and the lack of objective and clinically reliable diagnostic tools, discriminating Sjögren's syndrome dry eye (SSDE) from non-Sjögren's syndrome dry eye (NSSDE) remains a challenge for clinicians. Diagnosing SS is important to improve the quality of life of patients through timely referral for systemic workups, as SS is associated with serious systemic complications such as lymphoma and other autoimmune diseases. The purpose of this article is to describe the current molecular understanding of Sjögren's syndrome and its implications for novel diagnostic modalities on the horizon. A literature review of the pre-clinical and clinical studies published between 2016 and 2022 was conducted. The SSDE pathophysiology and immunology pathways have become better understood in recent years. Novel diagnostic modalities, such as tear and saliva proteomics as well as exosomal biomarkers, provide hope on the horizon.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Cristina Tanasescu
- School of Optometry, University of Montreal, Montreal, QC H3T 1P1, Canada
| | - Belinda Jiao
- Department of Medicine, Division of Internal Medicine, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Bich H. Nguyen
- CHU Sainte Justine Hospital, Montreal, QC H3T 1C5, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|