1
|
Liu J, Wei F, Liu J, Sun W, Liu S, Chen S, Zhang D, Xu B, Ma S. Protective effects and mechanisms of HuDiChangRong capsule on TNBS-induced ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118879. [PMID: 39369923 DOI: 10.1016/j.jep.2024.118879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE UC, characterized by chronic inflammation primarily affecting the colon and rectum, follows a protracted relapsing course marked by inflammation and an abundance of free radicals at the onset. Hudichangrong Capsule (HDCRC), a traditional Chinese medicinal formula, has long been employed in the treatment of UC and chronic bacillary dysentery, exhibiting positive therapeutic outcomes and a high rate of cure in clinical practice. AIM OF THE STUDY The precise mechanism underlying its efficacy for UC remains elusive. Our objective was to investigate the anti-inflammatory effect and underlying mechanisms of HDCRC on TNBS-induced UC. MATERIALS AND METHODS Here, we introduced HDCRC and induced UC using TNBS. SPF BALB/c mice were divided into 6 groups as follows: control group, colitis model group, colitis treated with sulfasalazine (400 mg/kg) group, and colitis treated with HDCRC (156, 312, and 624 mg/kg) groups. To assess the effects of HDCRC on colitis, we measured body weight loss, disease activity index (DAI), colon length, tissue damage, degree of inflammation, immune capacity, and oxidative stress. Additionally, we evaluated the TLR-4/MyD88 pathway and its downstream signaling using immunohistochemistry, real-time qPCR, and Western blot. Network pharmacology was used for main target prediction. 16s rRNA was employed for gut microbiota detechtion and UPLC-QTOF-MS was used for its and its metabonomics. RESULTS HDCRC significantly slowed weight loss, ameliorated DAI, restored colon length, alleviated TNBS-induced tissue damage. It exerted the therapeutic effects via reducing oxidative stress, restoring immune balance, normalizing the inflammatory mediator levels and restoring intestinal barrier integrity. Furthermore, HDCRC mainly alleviate UC via suppressing the TLR-4/MyD88 pathway and its downstream signaling. The key components of the downstream pathway, including TLR-4, MyD88, NF-κB p65, ERK, p-JNK, p38, p-JAK1, JAK1, p-STAT3, and STAT3, were improved, thereby ameliorating the TNBS-induced injury. In addition, HDCRC could regulate gut microbiota (eg. Erysipelaloclostridium,etc.) and its metabonomics (eg. Vitamin B6 metabolism) in UC mice. CONCLUSIONS In conclusion, HDCRC exerts a protective effect against TNBS-induced UC in mice by inhibiting the TLR-4/MyD88 pathway and its downstream signaling, and partially JAK1/STAT3, suppressing oxidative stress, regulating immunity, restoring intestinal barrier integrity, and regulating gut microbiota and its metabonomics.
Collapse
Affiliation(s)
- Jingjing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jing Liu
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Wenbin Sun
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shusen Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Shengnan Chen
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Dongqi Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China
| | - Beilei Xu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150076, China; Engineering Research Center of Natural Anti-cancer Drugs, Ministry of Education, Harbin, 150076, China; Engineering Research Center of Chinese Medicine Production and New Drug Development, Beijing, 102488, China.
| | - Shuangcheng Ma
- Chinese Pharmacopoeia Commission, Beijing, 100061, China.
| |
Collapse
|
2
|
Peña-Vázquez GI, Serrano-Sandoval SN, Rodríguez-Rodríguez J, Antunes-Ricardo M, Guajardo-Flores D. Anti-inflammatory and antioxidant activity of functional lipids extracted through sustainable technologies from Mexican Opuntia ficus-indica seeds. Food Chem 2024; 467:142258. [PMID: 39637671 DOI: 10.1016/j.foodchem.2024.142258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Opuntia ficus-indica (OFI) seeds are a rich source of functional lipids, yet research on Mexican cultivars remains limited. This study evaluated the antioxidant and anti-inflammatory properties of lipids extracted through subcritical fluid and supercritical fluid extraction with carbon dioxide (SCE-CO₂ and SFE-CO₂) from Mexican OFI Villanueva and Rojo Vigor seeds with and without enzymatic pretreatment. SCE OFI Villanueva oil showed higher extraction efficiency of linoleic (45.86 mg/g), and oleic (9.86 mg/g) acids purified more than 5.47 and 1.18 times, respectively. Additionally, SCE oils exhibited the highest antioxidant potential (68 %) and anti-inflammatory activity (45 %) at the evaluated doses. In conclusion, SCE-CO₂ enhanced the extraction efficiency of unsaturated fatty acids, improving their potential biological effects, while enzymatic pretreatment did not positively impact on results, suggesting reduced extraction efficiency and bioactivity. These findings suggest that OFI seeds can serve as a valuable source of functional ingredients for the development of value-added food products.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - José Rodríguez-Rodríguez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel Guajardo-Flores
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL 64849, Mexico.
| |
Collapse
|
3
|
Yamaguchi M, Weir JD, Hartung R. The composition of linoleic acid and conjugated linoleic acid has potent synergistic effects on the growth and death of RAW264.7 macrophages: The role in anti-inflammatory effects. Int Immunopharmacol 2024; 141:112952. [PMID: 39151384 DOI: 10.1016/j.intimp.2024.112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Linoleic acid (LA) is an omega-6 polyunsaturated fatty acid. Conjugated linoleic acid (CLA) is a family of LA isomers that includes both a trans fatty acid and a cis fatty acid. Both fatty acids play a nutritional role in maintaining health. Inflammation is critical in the pathogenesis of many diseases, including cancer. This study found that the combination of LA and CLA (LA/CLA), each of which had no effect, had a strong anti-synergistic effect on inflammatory macrophage RAW264.7 cells in vitro. Cells were cultured in a DMEM containing fetal bovine serum with or without either LA, CLA, or a combination of LA/CLA. The composition of LA and CLA at a comparatively lower concentration synergistically suppressed cell growth, resulting in a reduction in cell number. The underlying mechanism of this effect was based on reduced levels of Ras, PI3K, Akt, MAPK, and mTOR and elevated levels of p21, p53, and Rb, which are associated with cell growth. In addition, the combination of LA and CLA at a lower concentration stimulated potential cell death associated with increased caspase-3 and cleaved caspase-3 levels. Notably, this composition synergistically suppressed the production of TNF-α, IL-6, and PGE2, which are a major mediator of inflammation, with lipopolysaccharide stimulation in RAW264.7 cells This effect was associated with decreased levels of COX-1, COX-2, and NF-κB p65. This study may provide a useful tool for treating inflammatory conditions with the composition of LA and CLA.
Collapse
Affiliation(s)
- Masayoshi Yamaguchi
- Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, 701 Ilalo Street, Honolulu, HI 96813, USA.
| | - James D Weir
- Department of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, AZ 85251, USA
| | - Ryan Hartung
- Department of Clinical Development, Primus Pharmaceuticals, Inc., Scottsdale, AZ 85251, USA
| |
Collapse
|
4
|
Lu N, Wei J, Gong X, Tang X, Zhang X, Xiang W, Liu S, Luo C, Wang X. Preventive Effect of Arctium lappa Polysaccharides on Acute Lung Injury through Anti-Inflammatory and Antioxidant Activities. Nutrients 2023; 15:4946. [PMID: 38068804 PMCID: PMC10708090 DOI: 10.3390/nu15234946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this study was to investigate the preventive effects of polysaccharides extracted from the roots of Arctium lappa (ALP) against acute lung injury (ALI) models induced by lipopolysaccharide (LPS). The polysaccharides were extracted and characterized, and their anti-inflammatory and antioxidant capacities were assessed. The findings demonstrated that ALP could mitigate the infiltration of inflammatory cells and reduce alveolar collapse in LPS-induced ALI in mice. The expression levels of the pro-inflammatory factor TNF-α decreased, while the anti-inflammatory factor IL-10 increased. Furthermore, the administration of ALP improved the activities of lung antioxidant enzymes, including SOD, GSH, and CAT, and lowered MDA levels. These results suggest that ALP exhibits a preventive effect on ALI and has potential as an alternative treatment for lung injury.
Collapse
Affiliation(s)
- Naiyan Lu
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Jiayi Wei
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
| | - Xuelei Gong
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214126, China
| | - Xuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214126, China; (J.W.); (X.T.); (X.Z.)
| | - Wen Xiang
- School of Medicine, Nankai University, Tianjin 300350, China;
| | - Samuel Liu
- Shenzhen Buddy Technology Development Co., Ltd., Shenzhen 518000, China; (S.L.); (C.L.)
| | - Cherry Luo
- Shenzhen Buddy Technology Development Co., Ltd., Shenzhen 518000, China; (S.L.); (C.L.)
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China; (N.L.); (X.G.)
| |
Collapse
|
5
|
Zhao T, Wang S, Liu W, Shen J, Dai Y, Shi M, Huang X, Wei Y, Li T, Zhang X, Xie Z, Wang N, Qin D, Li Z. Clinical efficacy of Yiqi Yangxue formula on knee osteoarthritis and unraveling therapeutic mechanism through plasma metabolites in rats. Front Genet 2023; 14:1096616. [PMID: 37091797 PMCID: PMC10113924 DOI: 10.3389/fgene.2023.1096616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Objective: To observe the clinical efficacy and safety of Yiqi Yangxue formula (YQYXF) on knee osteoarthritis (KOA), and to explore the underlying therapeutic mechanism of YQYXF through endogenous differential metabolites and their related metabolic pathways.Methods: A total of 61 KOA patients were recruited and divided into the treatment group (YQYXF, 30 cases) and the control group (celecoxib, Cxb, 31 cases). Effects of these two drugs on joint pain, swelling, erythrocyte sedimentation rate (ESR) and c-reactive protein (CRP) were observed, and their safety and adverse reactions were investigated. In animal experiments, 63 SD rats were randomly divided into normal control (NC) group, sham operation (sham) group, model (KOA) group, Cxb group, as well as low-dose (YL), medium-dose (YM), and high-dose groups of YQYXF (YH). The KOA rat model was established using a modified Hulth method. Ultra-high-performance liquid chromatography/Q Exactive HF-X Hybrid Quadrupole-Orbitrap Mass (UHPLC-QE-MS)-based metabolomics technology was used to analyze the changes of metabolites in plasma samples of rats. Comprehensive (VIP) >1 and t-test p < 0.05 conditions were used to screen the disease biomarkers of KOA, and the underlying mechanisms of YQYXF were explored through metabolic pathway enrichment analysis. The related markers of YQYXF were further verified by ELISA (enzyme-linked immunosorbent assay).Results: YQYXF can improve joint pain, swelling, range of motion, joint function, Michel Lequesen index of severity for osteoarthritis (ISOA) score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score, ESR, and CRP. No apparent adverse reactions were reported. In addition, YQYXF can improve cartilage damage in KOA rats, reverse the abnormal changes of 16 different metabolites, and exert an anti-KOA effect mainly through five metabolic pathways. The levels of reactive oxygen species (ROS) and glutathione (GSH) were significantly decreased after the treatment of YQYXF.Conclusion: YQYXF can significantly improve the clinical symptoms of KOA patients without obvious adverse reactions. It mainly improved KOA through modulating lipid metabolism-related biomarkers, reducing lipid peroxidation and oxidative stress.
Collapse
Affiliation(s)
- Ting Zhao
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiqi Wang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenbin Liu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Jiayan Shen
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Youwu Dai
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingqin Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoyi Huang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Tao Li
- Qujing Hospital Affiliated to Yunnan University of Traditional Chinese Medicine, Qujing, China
| | - Xiaoyu Zhang
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaohu Xie
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Na Wang
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Zhaofu Li, ; Na Wang, ; Dongdong Qin,
| | - Dongdong Qin
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Zhaofu Li, ; Na Wang, ; Dongdong Qin,
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Zhaofu Li, ; Na Wang, ; Dongdong Qin,
| |
Collapse
|
6
|
Li J, Li Q, Wu Q, Gao N, Wang Z, Yang Y, Shan A. Exopolysaccharides of Lactobacillus rhamnosus GG ameliorate Salmonella typhimurium-induced intestinal inflammation via the TLR4/NF-κB/MAPK pathway. J Anim Sci Biotechnol 2023; 14:23. [PMID: 36872332 PMCID: PMC9987055 DOI: 10.1186/s40104-023-00830-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/03/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Salmonella typhimurium (S.T), as an important foodborne bacterial pathogen, can cause diarrhea and gastroenteritis in humans and animals. Numerous studies have confirmed that exopolysaccharides (EPSs) have various biological functions, but the mechanism through which EPSs improve the immunity of animals against the invasion of pathogenic bacteria is unclear. Here, we explored the protective effect of EPSs of Lactobacillus rhamnosus GG (LGG) on the S.T-infected intestine. METHODS Mice received adequate food and drinking water for one week before the start of the experiment. After 7 d of prefeeding, 2×108 CFU/mL S.T solution and an equivalent volume of saline (control group) were given orally for 1 d. On the fourth day, the mice were treated with 0.5 mg/mL EPSs, 1.0 mg/mL EPSs, 2.0 mg/mL EPSs, or 2.0 mg/mL penicillin for 7 d. Finally, the body and relative organ weight, histological staining, and the levels of antioxidant enzyme activity and inflammatory cytokines were determined. RESULTS The S.T-infected mice exhibited symptoms of decreased appetite, somnolence, diarrhea and flagging spirit. Treatment with EPSs and penicillin improved the weight loss of the mice, and the high dose of EPSs showed the best therapeutic effect. EPSs significantly ameliorated S.T-induced ileal injury in mice. High-dose EPSs were more effective than penicillin for alleviating ileal oxidative damage induced by S.T. The mRNA levels of inflammatory cytokines in the ileum of mice showed that the regulatory effects of EPSs on inflammatory cytokines were better than those of penicillin. EPSs could inhibit the expression and activation of key proteins of the TLR4/NF-κB/MAPK pathway and thereby suppress the level of S.T-induced ileal inflammation. CONCLUSIONS EPSs attenuate S.T-induced immune responses by inhibiting the expression of key proteins in the TLR4/NF-κB/MAPK signaling pathway. Moreover, EPSs could promote bacterial aggregation into clusters, which may be a potential strategy for reducing the bacterial invasion of intestinal epithelial cells.
Collapse
Affiliation(s)
- Jinze Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qiuke Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qianhui Wu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Nan Gao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Zhihua Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Yang Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China.
| |
Collapse
|
7
|
Jian S, Zhang L, Ding N, Yang K, Xin Z, Hu M, Zhou Z, Zhao Z, Deng B, Deng J. Effects of black soldier fly larvae as protein or fat sources on apparent nutrient digestibility, fecal microbiota, and metabolic profiles in beagle dogs. Front Microbiol 2022; 13:1044986. [PMID: 36504773 PMCID: PMC9733673 DOI: 10.3389/fmicb.2022.1044986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) act as a biological system converting organic waste into protein and fat with great potential application as pet food. To evaluate the feasibility of BSFL as a protein and fat source, 20 healthy beagle dogs were fed three dietary treatments for 65 days, including (1) a basal diet group (CON group), (2) a basal diet that replaced 20% chicken meal with defatted black soldier fly larvae protein group (DBP group), and (3) a basal diet that replaced 8% mixed oil with black soldier fly larvae fat group (BF group). This study demonstrated that the serum biochemical parameters among the three groups were within the normal range. No difference (p > 0.05) was observed in body weight, body condition score, or antioxidant capacity among the three groups. The mean IFN-γ level in the BF group was lower than that in the CON group, but there was no significant difference (p > 0.05). Compared with the CON group, the DBP group had decreasing (p < 0.05) apparent crude protein and organic matter digestibility. Furthermore, the DBP group had decreasing (p < 0.05) fecal propionate, butyrate, total short-chain fatty acids (SCFAs), isobutyrate, isovalerate, and total branched-chain fatty acids (BCFAs) and increased (p < 0.05) fecal pH. Nevertheless, there was no difference (p > 0.05) in SCFAs or BCFAs between the CON and BF groups. The fecal microbiota revealed that Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were significantly enriched in the DBP group, and Terrisporobacter and Ralstonia were significantly enriched in the BF group. The fecal metabolome showed that the DBP group significantly influenced 18 metabolic pathways. Integrating biological and statistical correlation analysis on differential fecal microbiota and metabolites between the CON and DBP groups found that Lachnoclostridium, Clostridioides, and Enterococcus were positively associated with biotin. In addition, Lachnoclostridium, Clostridioides, Blautia, and Enterococcus were positively associated with niacinamide, phenylalanine acid, fumaric acid, and citrulline and negatively associated with cadavrine, putrescine, saccharopine, and butyrate. In all, 20% DBP restrained the apparent CP and OM digestibility, thereby affecting hindgut microbial metabolism. In contrast, 8% BF in the dog diet showed no adverse effects on body condition, apparent nutrient digestibility, fecal microbiota, or metabolic profiles. Our findings are conducive to opening a new avenue for the exploitation of DBP and BF as protein and fat resources in dog food.
Collapse
Affiliation(s)
- Shiyan Jian
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Guangzhou Qingke Biotechnology Co., Ltd., Guangzhou, Guangdong, China
| | - Ning Ding
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Kang Yang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Minhua Hu
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhidong Zhou
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Zhihong Zhao
- Guangzhou General Pharmaceutical Research Institute Co., Ltd. (National Canine Laboratory Animal Resources Center), Guangzhou, Guangdong, China
| | - Baichuan Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Ahmed SA, Shaker SE, Shawky H. Solvent polarity dictates the anti-inflammatory potency and mechanism of two purslane (Portulaca oleracea) seed extracts. J Food Biochem 2022; 46:e14281. [PMID: 35735134 DOI: 10.1111/jfbc.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to assess the effect of solvent polarity on anti-inflammatory potency and the underlying mechanisms of two purslane seed extracts. Methanol and dichloromethane extracts were prepared using Soxhlet extraction and chromatographically analyzed. Antioxidant activities were assessed by different assays, while the anti-inflammatory potentials were assessed in RAW 264.7 macrophage cells. Methanol extraction yielded 15.5% water-soluble extract while dichloromethane produced 3.74% fixed oil. Nineteen phenolic compounds were chromatographically identified in methanol extract compared with 16 in the fixed oil including omega fatty acids and phytosterols. Methanol extract showed significantly higher capacity in radical scavenging assays (p < .001), but the fixed oil showed higher total antioxidant capacity (p < .001). Both extracts demonstrated anti-inflammatory potentials with different mechanisms, where the phenol-rich methanol extract significantly reduced TNF-α (p = .0371) and IL-1β (p = .0029) production through an antioxidant-mediated pathway, while the fixed oil inhibited COX1, COX2, and PGE2 gene expression through the upregulation of IL-10. PRACTICAL APPLICATIONS: Both purslane extracts presented herein demonstrated remarkable antioxidant/ anti-inflammatory potentials that could be safely utilized as natural antioxidants and inflammation remedies or as functional food products, particularly that they showed no cytotoxic effects.
Collapse
Affiliation(s)
- Samia A Ahmed
- Therapeutic Chemistry Department, National Research Centre, Pharmaceutical and Drug Industries Research Institute, Cairo, Egypt
| | - Sylvia E Shaker
- Therapeutic Chemistry Department, National Research Centre, Pharmaceutical and Drug Industries Research Institute, Cairo, Egypt
| | - Heba Shawky
- Therapeutic Chemistry Department, National Research Centre, Pharmaceutical and Drug Industries Research Institute, Cairo, Egypt
| |
Collapse
|
9
|
Mafra D, Borges NA, Alvarenga L, Ribeiro M, Fonseca L, Leal VO, Shiels PG, Stenvinkel P. Fermented food: Should patients with cardiometabolic diseases go back to an early neolithic diet? Crit Rev Food Sci Nutr 2022; 63:10173-10196. [PMID: 35593230 DOI: 10.1080/10408398.2022.2077300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fermentation has been used since the Early Neolithic period to preserve foods. It has inherent organoleptic and nutritive properties that bestow health benefits, including reducing inflammation and oxidative stress, supporting the growth of salutogenic microbiota, enhancing intestinal mucosal protection and promoting beneficial immunometabolic health effects. The fermentation of food with specific microbiota increases the production salutogenic bioactive compounds that can activate Nrf2 mediated cytoprotective responses and mitigate the effects of the 'diseasome of aging' and its associated inflammageing, which presents as a prominent feature of obesity, type-2 diabetes, cardiovascular and chronic kidney disease. This review discusses the importance of fermented food in improving health span, with special reference to cardiometabolic diseases.
Collapse
Affiliation(s)
- D Mafra
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - N A Borges
- Institute of Nutrition, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Alvarenga
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - M Ribeiro
- Graduate Program in Biological Sciences, Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - L Fonseca
- Post Graduation Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro, Brazil
| | - V O Leal
- Division of Nutrition, Pedro Ernesto University Hospital, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - P Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| |
Collapse
|
10
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Hidalgo MA, Carretta MD, Burgos RA. Long Chain Fatty Acids as Modulators of Immune Cells Function: Contribution of FFA1 and FFA4 Receptors. Front Physiol 2021; 12:668330. [PMID: 34276398 PMCID: PMC8280355 DOI: 10.3389/fphys.2021.668330] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Long-chain fatty acids are molecules that act as metabolic intermediates and constituents of membranes; however, their novel role as signaling molecules in immune function has also been demonstrated. The presence of free fatty acid (FFA) receptors on immune cells has contributed to the understanding of this new role of long-chain fatty acids (LCFAs) in immune function, showing their role as anti-inflammatory or pro-inflammatory molecules and elucidating their intracellular mechanisms. The FFA1 and FFA4 receptors, also known as GPR40 and GPR120, respectively, have been described in macrophages and neutrophils, two key cells mediating innate immune response. Ligands of the FFA1 and FFA4 receptors induce the release of a myriad of cytokines through well-defined intracellular signaling pathways. In this review, we discuss the cellular responses and intracellular mechanisms activated by LCFAs, such as oleic acid, linoleic acid, palmitic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), in T-cells, macrophages, and neutrophils, as well as the role of the FFA1 and FFA4 receptors in immune cells.
Collapse
Affiliation(s)
- Maria A Hidalgo
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Maria D Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael A Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
12
|
Lactobacillus plantarum ATG-K2 and ATG-K6 Ameliorates High-Fat with High-Fructose Induced Intestinal Inflammation. Int J Mol Sci 2021; 22:ijms22094444. [PMID: 33923142 PMCID: PMC8123065 DOI: 10.3390/ijms22094444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity has become a worldwide health problem, and many significant inflammatory markers have been associated with the risk of side effects of obesity and obesity-related diseases. After a normal diet or high-fat diet with high-fructose water (HFHF) for 8 weeks, male Wistar rats were divided randomly into four experimental groups according to body weight. Next, for 8 weeks, a normal diet, HFHF diet, and HFHF diet with L. plantarum strains ATG-K2 or ATG-K6 were administered orally. Compared to the control group, the HFHF diet group showed significantly increased visceral fat, epididymal fat, and liver weight. The mRNA and protein expression levels of FAS and SREBP-1c were higher in the HFHF diet group than in the HFHF diet with L. plantarum strains ATG-K2 and ATG-K6. The HFHF diet with L. plantarum strain ATG-K2 showed significantly decreased inflammatory cytokine expression in the serum and small intestine compared to the HFHF diet group. Furthermore, histological morphology showed minor cell injury, less severe infiltration, and longer villi height in the small intestine ileum of the HFHF diet with L. plantarum strains groups than in the HFHF diet group. These results suggest that L. plantarum strains K2 and K6 may help reduce intestinal inflammation and could be used as treatment alternatives for intestinal inflammatory reactions and obesity.
Collapse
|