1
|
Bolgla LA, Purohit S, Hannah DC, Hunter DM. Comparison of Inflammatory Biomarkers in Females with and Without Patellofemoral Pain and Associations with Patella Position, Hip and Knee Kinematics, and Pain. Biomedicines 2025; 13:761. [PMID: 40149737 PMCID: PMC11940318 DOI: 10.3390/biomedicines13030761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Patellofemoral pain (PFP) is believed to be a precursor to knee osteoarthritis (OA). The primary purpose of this study was to compare matrix metalloproteinase-9 (MMP-9) levels in young adult females with and without PFP. The secondary purpose was to determine the associations between MMP-9, patella position, hip and knee kinematics, and pain in females with PFP. Methods: Plasma was analyzed for MMP-9. Patellar position was measured using diagnostic ultrasound as the degree of offset (RAB angle) from the deepest aspect of the femoral trochlear groove to the inferior pole of the patella. A positive RAB angle suggested patella lateralization. Hip and knee kinematics during a single-leg squat were measured using 2-dimensional motion analysis and quantified as the dynamic valgus index (DVI), a combined measure of hip and knee motion. A higher DVI suggests increased valgus loading at the patellofemoral joint. Pain was measured using a 10 cm visual analog scale. Results: Females with PFP had significantly higher levels of MMP-9 than controls (72.7 vs. 58.0 ng/mL, p = 0.03). Females with PFP had a significant positive association between MMP-9 and patella lateralization (r = 0.38, p = 0.04), suggesting that greater patellar lateralization may contribute to increased joint inflammation. A significant inverse association was observed between MMP-9 and the DVI (r = -0.50, p = 0.007), indicating that individuals with higher inflammatory marker levels may adopt movement patterns that reduce valgus loading. Conclusions: The significant association between MMP-9 and patella lateralization suggested a potential link between patella alignment and joint inflammation, which may contribute to early joint degeneration. The inverse association between MMP-9 levels and the DVI suggested that subjects with higher MMP-9 levels adjusted their movement pattern as a compensatory mechanism to reduce knee valgus stress to reduce joint degeneration.
Collapse
Affiliation(s)
- Lori A. Bolgla
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA;
| | - Daniel C. Hannah
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.C.H.); (D.M.H.)
| | - David Monte Hunter
- Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (D.C.H.); (D.M.H.)
| |
Collapse
|
2
|
Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M, Li Z. Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes. Front Mol Biosci 2024; 11:1472492. [PMID: 39329090 PMCID: PMC11425083 DOI: 10.3389/fmolb.2024.1472492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Ferroptosis, an iron-ion-dependent process of lipid peroxidation, damages the plasma membrane, leading to non-programmed cell death. Osteoarthritis (OA), a prevalent chronic degenerative joint disease among middle-aged and older adults, is characterized by chondrocyte damage or loss. Emerging evidence indicates that chondrocyte ferroptosis plays a role in OA development. However, most research has concentrated on ferroptosis regulation involving typical iron ions, potentially neglecting the significance of elevated copper ions in both serum and joint fluid of patients with OA. This review aims to fill this gap by systematically examining the interplay between copper metabolism, oxidative stress, ferroptosis, and copper-associated cell death in OA. It will provide a comprehensive overview of copper ions' role in regulating ferroptosis and their dual role in OA. This approach seeks to offer new insights for further research, prevention, and treatment of OA.
Collapse
Affiliation(s)
- Qingyuan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yanan Xiao
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mengqi Guan
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xianshuai Zhang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianan Yu
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Mingze Han
- Clinical College of Integrated Traditional Chinese and Western Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhenhua Li
- Orthopedic Center, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Karoichan A, Boucenna S, Tabrizian M. Therapeutics of the future: Navigating the pitfalls of extracellular vesicles research from an osteoarthritis perspective. J Extracell Vesicles 2024; 13:e12435. [PMID: 38943211 PMCID: PMC11213691 DOI: 10.1002/jev2.12435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 07/01/2024] Open
Abstract
Extracellular vesicles have gained wide momentum as potential therapeutics for osteoarthritis, a highly prevalent chronic disease that still lacks an approved treatment. The membrane-bound vesicles are secreted by all cells carrying different cargos that can serve as both disease biomarkers and disease modifiers. Nonetheless, despite a significant peak in research regarding EVs as OA therapeutics, clinical implementation seems distant. In addition to scalability and standardization challenges, researchers often omit to focus on and consider the proper tropism of the vesicles, the practicality and relevance of their source, their low native therapeutic efficacy, and whether they address the disease as a whole. These considerations are necessary to better understand EVs in a clinical light and have been comprehensively discussed and ultimately summarized in this review into a conceptualized framework termed the nanodiamond concept. Future perspectives are also discussed, and alternatives are presented to address some of the challenges and concerns.
Collapse
Affiliation(s)
- Antoine Karoichan
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Sarah Boucenna
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
| | - Maryam Tabrizian
- Faculty of Dental Medicine and Oral Health SciencesMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
4
|
Xu J, Liu J, Qu Y, Jiang L, Liang R, Li B, Li L, Jiang Y. Label-free quantitative proteomic analysis of serum exosomes in mice with thoracic aortic aneurysm. Proteome Sci 2023; 21:19. [PMID: 37875866 PMCID: PMC10594717 DOI: 10.1186/s12953-023-00220-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE Thoracic aortic aneurysm (TAA) is a cardiovascular disease with high morbidity and mortality. However, the causes and mechanisms of TAA are not fully understood. Serum exosomes from mice with TAA were used to explore the markers associated with this disease. METHODS C57BL/6 mice were divided into three groups and given ordinary drinking water, ordinary drinking water plus a saline osmotic pump, or drinking water containing β-aminopropionitrile (BAPN) (1 g/kg/d) plus an angiotensin II (Ang II) (1 μg/kg/min) osmotic pump. Haematoxylin and eosin staining of thoracic aortic tissues was performed. The basic characteristics of exosomes were analysed. Differentially expressed proteins (DEPs) were identified by LC‒MS/MS. Protein‒protein networks and enrichment analysis were used to explore possible molecular mechanisms. RESULTS The present study elucidated the protein expression profile of serum exosomes in mice with TAA induced by BAPN combined with Ang II. In this work, the expression of a total of 196 proteins was significantly dysregulated in serum exosomes of mice with TAA, with 122 proteins significantly upregulated and 74 proteins markedly downregulated. Notably, Haptoglobin (Hp) and Serum amyloid p-component (Sap) identified based on the PPI network were significantly upregulated and have been strongly linked to cardiovascular disease. Interestingly, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the upregulated and downregulated proteins were involved in the complement and coagulation cascade pathways. CONCLUSIONS This study showed that the identified DEPs have potential as biomarkers for the diagnosis of TAA and provided a more comprehensive understanding of the pathophysiological mechanisms of TAA.
Collapse
Affiliation(s)
- Jia Xu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Jiacheng Liu
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yibai Qu
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong, China
| | - Linhui Jiang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Rongxin Liang
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Bohai Li
- Department of Cardiovascular Surgery, Affiliated Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, 510000, Guangdong, China
| | - Lei Li
- Department of Neurology, Shenzhen Hospital of Southern Medical University, Shenzhen, 518000, Guangdong, China.
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510000, Guangdong, China.
| |
Collapse
|
5
|
Anderson JR, Johnson E, Jenkins R, Jacobsen S, Green D, Walters M, Bundgaard L, Hausmans BAC, van den Akker G, Welting TJM, Chabronova A, Kharaz YA, Clarke EJ, James V, Peffers MJ. Multi-Omic Temporal Landscape of Plasma and Synovial Fluid-Derived Extracellular Vesicles Using an Experimental Model of Equine Osteoarthritis. Int J Mol Sci 2023; 24:14888. [PMID: 37834337 PMCID: PMC10573509 DOI: 10.3390/ijms241914888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Extracellular vesicles (EVs) contribute to osteoarthritis pathogenesis through their release into joint tissues and synovial fluid. Synovial fluid-derived EVs have the potential to be direct biomarkers in the causal pathway of disease but also enable understanding of their role in disease progression. Utilizing a temporal model of osteoarthritis, we defined the changes in matched synovial fluid and plasma-derived EV small non-coding RNA and protein cargo using sequencing and mass spectrometry. Data exploration included time series clustering, factor analysis and gene enrichment interrogation. Chondrocyte signalling was analysed using luciferase-based transcription factor activity assays. EV protein cargo appears to be more important during osteoarthritis progression than small non-coding RNAs. Cluster analysis revealed plasma-EVs represented a time-dependent response to osteoarthritis induction associated with supramolecular complexes. Clusters for synovial fluid-derived EVs were associated with initial osteoarthritis response and represented immune/inflammatory pathways. Factor analysis for plasma-derived EVs correlated with day post-induction and were primarily composed of proteins modulating lipid metabolism. Synovial fluid-derived EVs factors represented intermediate filament and supramolecular complexes reflecting tissue repair. There was a significant interaction between time and osteoarthritis for CRE, NFkB, SRE, SRF with a trend for osteoarthritis synovial fluid-derived EVs at later time points to have a more pronounced effect.
Collapse
Affiliation(s)
- James R. Anderson
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Emily Johnson
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Rosalind Jenkins
- CDSS Bioanalytical Facility, Liverpool Shared Research Facilities, Department Pharmacology and Therapeutics, University of Liverpool, Liverpool L7 8TX, UK
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, DK-1870 Copenhagen, Denmark
| | - Daniel Green
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Marie Walters
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, DK-1870 Copenhagen, Denmark
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Taastrup, DK-1870 Copenhagen, Denmark
| | - Bas A. C. Hausmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 Maastricht, The Netherlands; (B.A.C.H.)
| | - Guus van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 Maastricht, The Netherlands; (B.A.C.H.)
| | - Tim J. M. Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, 6229 Maastricht, The Netherlands; (B.A.C.H.)
| | - Alzbeta Chabronova
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Yalda A. Kharaz
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Emily J. Clarke
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, Nottingham LE12 5RD, UK
| | - Mandy J. Peffers
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK (Y.A.K.)
| |
Collapse
|
6
|
Mohammadipoor A, Hershfield MR, Linsenbardt HR, Smith J, Mack J, Natesan S, Averitt DL, Stark TR, Sosanya NM. Biological function of Extracellular Vesicles (EVs): a review of the field. Mol Biol Rep 2023; 50:8639-8651. [PMID: 37535245 DOI: 10.1007/s11033-023-08624-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
Extracellular vesicles (EVs) theranostic potential is under intense investigation. There is a wealth of information highlighting the role that EVs and the secretome play in disease and how these are being utilized for clinical trials and novel therapeutic possibilities. However, understanding of the physiological and pathological roles of EVs remain incomplete. The challenge lies in reaching a consensus concerning standardized quality-controlled isolation, storage, and sample preparation parameters. Interest in circulating EV cargo as diagnostic and prognostic biomarkers is steadily growing. Though promising, various limitations need to be addressed before there can be successful, full-scale therapeutic use of approved EVs. These limitations include obtaining or manufacturing from the appropriate medium (e.g., from bodily fluid or cell culture), loading and isolating EVs, stability, and storage, standardization of processing, and determining potency. This review highlights specific topics, including circulation of abnormal EVs contribute to human disease and the theranostic potential of EVs. Theranostics is defined as a combination of the word's therapeutics and diagnostics and describes how a specific medicine or technique can function as both. Key findings include, (1) EVs and the secretome are future theranostics which will be utilized as both biomarkers for diagnosis and as therapeutics, (2) basic and translational research supports clinical trials utilizing EVs/secretome, and (3) additional investigation is required to fully unmask the theranostic potential of EVs/secretome in specific diseases and injuries.
Collapse
Affiliation(s)
- Arezoo Mohammadipoor
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Megan R Hershfield
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - James Smith
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - James Mack
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Shanmugasundaram Natesan
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - Thomas R Stark
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Natasha M Sosanya
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA.
| |
Collapse
|
7
|
Elsherbini A, Zhu Z, Quadri Z, Crivelli SM, Ren X, Vekaria HJ, Tripathi P, Zhang L, Zhi W, Bieberich E. Novel Isolation Method Reveals Sex-Specific Composition and Neurotoxicity of Small Extracellular Vesicles in a Mouse Model of Alzheimer's Disease. Cells 2023; 12:1623. [PMID: 37371093 PMCID: PMC10297289 DOI: 10.3390/cells12121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
We developed a new method to isolate small extracellular vesicles (sEVs) from male and female wild-type and 5xFAD mouse brains to investigate the sex-specific functions of sEVs in Alzheimer's disease (AD). A mass spectrometric analysis revealed that sEVs contained proteins critical for EV formation and Aβ. ExoView analysis showed that female mice contained more GFAP and Aβ-labeled sEVs, suggesting that a larger proportion of sEVs from the female brain is derived from astrocytes and/or more likely to bind to Aβ. Moreover, sEVs from female brains had more acid sphingomyelinase (ASM) and ceramide, an enzyme and its sphingolipid product important for EV formation and Aβ binding to EVs, respectively. We confirmed the function of ASM in EV formation and Aβ binding using co-labeling and proximity ligation assays, showing that ASM inhibitors prevented complex formation between Aβ and ceramide in primary cultured astrocytes. Finally, our study demonstrated that sEVs from female 5xFAD mice were more neurotoxic than those from males, as determined by impaired mitochondrial function (Seahorse assays) and LDH cytotoxicity assays. Our study suggests that sex-specific sEVs are functionally distinct markers for AD and that ASM is a potential target for AD therapy.
Collapse
Affiliation(s)
- Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Simone M. Crivelli
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Xiaojia Ren
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA;
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Liping Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Wenbo Zhi
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA;
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| |
Collapse
|
8
|
Chung DD, Mahnke AH, Pinson MR, Salem NA, Lai MS, Collins NP, Hillhouse AE, Miranda RC. Sex differences in the transcriptome of extracellular vesicles secreted by fetal neural stem cells and effects of chronic alcohol exposure. Biol Sex Differ 2023; 14:19. [PMID: 37060018 PMCID: PMC10105449 DOI: 10.1186/s13293-023-00503-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/04/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Prenatal alcohol (ethanol) exposure (PAE) results in brain growth restriction, in part, by reprogramming self-renewal and maturation of fetal neural stem cells (NSCs) during neurogenesis. We recently showed that ethanol resulted in enrichment of both proteins and pro-maturation microRNAs in sub-200-nm-sized extracellular vesicles (EVs) secreted by fetal NSCs. Moreover, EVs secreted by ethanol-exposed NSCs exhibited diminished efficacy in controlling NSC metabolism and maturation. Here we tested the hypothesis that ethanol may also influence the packaging of RNAs into EVs from cell-of-origin NSCs. METHODS Sex-specified fetal murine iso-cortical neuroepithelia from three separate pregnancies were maintained ex vivo, as neurosphere cultures to model the early neurogenic niche. EVs were isolated by ultracentrifugation from NSCs exposed to a dose range of ethanol. RNA from paired EV and cell-of-origin NSC samples was processed for ribosomal RNA-depleted RNA sequencing. Differential expression analysis and exploratory weighted gene co-expression network analysis (WGCNA) identified candidate genes and gene networks that were drivers of alterations to the transcriptome of EVs relative to cells. RESULTS The RNA content of EVs differed significantly from cell-of-origin NSCs. Biological sex contributed to unique transcriptome variance in EV samples, where > 75% of the most variant transcripts were also sex-variant in EVs but not in cell-of-origin NSCs. WGCNA analysis also identified sex-dependent enrichment of pathways, including dopamine receptor binding and ectoderm formation in female EVs and cell-substrate adhesion in male EVs, with the top significant DEGs from differential analysis of overall individual gene expressions, i.e., Arhgap15, enriched in female EVs, and Cenpa, enriched in male EVs, also serving as WCGNA hub genes of sex-biased EV WGCNA clusters. In addition to the baseline RNA content differences, ethanol exposure resulted in a significant dose-dependent change in transcript expression in both EVs and cell-of-origin NSCs that predominantly altered sex-invariant RNAs. Moreover, at the highest dose, ~ 73% of significantly altered RNAs were enriched in EVs, but depleted in NSCs. CONCLUSIONS The EV transcriptome is distinctly different from, and more sex-variant than, the transcriptome of cell-of-origin NSCs. Ethanol, a common teratogen, results in dose-dependent sorting of RNA transcripts from NSCs to EVs which may reprogram the EV-mediated endocrine environment during neurogenesis.
Collapse
Affiliation(s)
- Dae D Chung
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education, Texas A&M University Health Science Center, Building 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA
| | - Amanda H Mahnke
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education, Texas A&M University Health Science Center, Building 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA
- Women's Health in Neuroscience, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Marisa R Pinson
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education, Texas A&M University Health Science Center, Building 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA
| | - Nihal A Salem
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education, Texas A&M University Health Science Center, Building 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA
| | - Michael S Lai
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education, Texas A&M University Health Science Center, Building 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA
| | - Natalie P Collins
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education, Texas A&M University Health Science Center, Building 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA
| | - Andrew E Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, 77843, USA
| | - Rajesh C Miranda
- School of Medicine, Department of Neuroscience and Experimental Therapeutics, Medical Research and Education, Texas A&M University Health Science Center, Building 8447 Riverside Parkway, Bryan, TX, 77807-3260, USA.
- Women's Health in Neuroscience, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
9
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
10
|
Proteomic Analysis of Female Synovial Fluid to Identify Novel Biomarkers for Osteoarthritis. Life (Basel) 2023; 13:life13030605. [PMID: 36983761 PMCID: PMC10054440 DOI: 10.3390/life13030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Osteoarthritis (OA) is a highly prevalent degenerative joint condition that disproportionately affects females. The pathophysiology of the disease is not well understood, which makes diagnosis and treatment difficult. Given the physical connection of synovial fluid (SF) with articular tissues, the SF’s composition can reflect relevant biological modifications, and has therefore been a focus of research. Previously, we demonstrated that extracellular vesicles isolated from the synovial fluid of OA patients carry different cargo (protein and miRNA) in a sex-specific manner. Given the increased prevalence and severity of OA in females, this study aims to identify differential protein content within the synovial fluid of female OA and non-osteoarthritic (non-OA) patients. We found that several proteins were differentially expressed in osteoarthritic females compared with age-matched controls. Presenilin, Coagulation Factor X, Lysine-Specific Demethylase 2B, Tenascin C, Leucine-Rich Repeat-Containing Protein 17 fragments, and T-Complex Protein 1 were negatively regulated in the OA group, with PGD Synthase, Tubulointerstitial Nephritis Antigen, and Nuclear Receptor Binding SET Domain Protein 1 positively regulated in the OA group. Database for Annotation, Visualization, and Integrated Discovery (DAVID) and QuickGO analyses established these proteins as significantly involved in many biological, cellular, and molecular processes. In conclusion, the protein content of female synovial fluid is altered in OA patients, which is likely to provide insights into gender-specific pathophysiology.
Collapse
|
11
|
Soluble and EV-Associated Diagnostic and Prognostic Biomarkers in Knee Osteoarthritis Pathology and Detection. Life (Basel) 2023; 13:life13020342. [PMID: 36836699 PMCID: PMC9961153 DOI: 10.3390/life13020342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Osteoarthritis (OA) is the most common degenerative disease of the connective tissue of the human musculoskeletal system. Despite its widespread prevalence, there are many limitations in its diagnosis and treatment. OA diagnosis currently relies on the presence of clinical symptoms, sometimes accompanied by changes in joint X-rays or MRIs. Biomarkers help not only to diagnose early disease progression but also to understand the process of OA in many ways. In this article, we briefly summarize information on articular joints and joint tissues, the pathogenesis of OA and review the literature about biomarkers in the field of OA, specifically inflammatory cytokines/chemokines, proteins, miRNA, and metabolic biomarkers found in the blood, synovial fluid and in extracellular vesicles.
Collapse
|
12
|
Specific Blood RNA Profiles in Individuals with Acute Spinal Cord Injury as Compared with Trauma Controls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1485135. [PMID: 36686379 PMCID: PMC9851797 DOI: 10.1155/2023/1485135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Background Spinal cord injury (SCI) is known to cause a more robust systemic inflammatory response than general trauma without CNS injury, inducing severe secondary organ damage, especially the lung and liver. Related studies are principally focused on the mechanisms underlying repair and regeneration in the injured spinal cord tissue. However, the specific mechanism of secondary injury after acute SCI is widely overlooked, compared with general trauma. Methods Two datasets of GSE151371 and GSE45376 related to the blood samples and spinal cord after acute SCI were selected to identify the differentially expressed genes (DEGs). In GSE151371, functional enrichment analysis on specific DEGs of blood samples was performed. And the top 15 specific hub genes were identified from intersectional genes between the specific upregulated DEGs of blood samples in GSE151371 and the upregulated DEGs of the spinal cord in GSE45376. The specific functional enrichment analysis and the drug candidates of the hub genes and the miRNAs-targeted hub genes were also analyzed and predicted. Results DEGs were identified, and a total of 64 specific genes were the intersection of upregulated genes of the spinal cord in GSE45376 and upregulated genes of human blood samples in GSE151371. The top 15 hub genes including HP, LCN2, DLGAP5, CEP55, HMMR, CDKN3, PRTN3, SKA3, MPO, LTF, CDC25C, MMP9, NEIL3, NUSAP1, and CD163 were calculated from the 64 specific genes. Functional enrichment analysis of the top 15 hub genes revealed inflammation-related pathways. The predicted miRNAs-targeted hub genes and drug candidates of hub genes were also performed to put forward reasonable treatment strategies. Conclusion The specific hub genes of acute SCI as compared with trauma without CNS injury were identified. The functional enrichment analysis of hub genes showed a specific immune response. Several predicted drugs of hub genes were also obtained. The hub genes and the predicted miRNAs may be potential biomarkers and therapeutic targets and require further validation.
Collapse
|
13
|
Chen A, Chen Y, Rong X, You X, Wu D, Zhou X, Zeng W, Zhou Z. The application of exosomes in the early diagnosis and treatment of osteoarthritis. Front Pharmacol 2023; 14:1154135. [PMID: 37188263 PMCID: PMC10175594 DOI: 10.3389/fphar.2023.1154135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
With the increase in human lifespan and the aggravation of global aging, the incidence of osteoarthritis (OA) is increasing annually. To better manage and control the progression of OA, prompt diagnosis and treatment for early-stage OA are important. However, a sensitive diagnostic modality and therapy for early OA have not been well developed. The exosome is a class of extracellular vesicles containing bioactive substances, that can be delivered directly from original cells to neighboring cells to modulate cellular activities through intercellular communication. In recent years, exosomes have been considered important in the early diagnosis and treatment of OA. Synovial fluid exosome and its encapsulated substances, e.g., microRNA, lncRNA, and proteins, can not only distinguish OA stages but also prevent the progression of OA by directly targeting cartilage or indirectly modulating the immune microenvironment in the joints. In this mini-review, we include recent studies on the diagnostic and therapeutic modalities of exosomes and hope to provide a new direction for the early diagnosis and treatment of OA disease in the future.
Collapse
Affiliation(s)
- Anjing Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Department of Scientific Research and Experiment Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yangmengfan Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Rong
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xinran Zhou
- West China Biobanks and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weinan Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Weinan Zeng, ; Zongke Zhou,
| | - Zongke Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University/Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Weinan Zeng, ; Zongke Zhou,
| |
Collapse
|
14
|
Xiao W, Ahluwalia P, Wang L, Howard J, Kolhe R, Rojiani AM, Rojiani MV. TIMP-1 Dependent Modulation of Metabolic Profiles Impacts Chemoresistance in NSCLC. Cells 2022; 11:cells11193036. [PMID: 36230997 PMCID: PMC9562647 DOI: 10.3390/cells11193036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
The development of chemoresistance remains a significant barrier to treating NSCLC. Alteration of cancer cell metabolism is an important mechanism for chemoresistance. This study explored the role of aberrant metabolism in TIMP-1-mediated chemoresistance. Bioinformatics analysis identified an association of high TIMP-1 with altered energy metabolism. We have defined the role of depolarized mitochondria through a reduction in lactate secretion, higher ROS levels in TIMP-1 KD cells and reduced GSH levels. TIMP-1 modulates the metabolic profile via acetylation of mitochondrial STAT3 and its interaction with CD44. Intriguingly, monomers of acetylated STAT3 were critical for altered metabolism, whereas STAT3 dimers abrogated this function. Further, the mitochondrial metabolic profile was also altered in a cisplatin-resistant clone of A549 cells. We also correlated the immunoexpression of CD44, STAT3 and TIMP-1 in patient samples. This study provided evidence that TIMP-1 alters the metabolic profile by modulating mitochondrial metabolism via the CD44-STAT3 axis through its effects on STAT3 acetylation. It also lent further support to the critical role of TIMP-1 in chemoresistance. Interrogation of the TCGA-LUAD dataset revealed perturbations in the critical modulator that can alter metabolic states in cancer cells. Higher expression of a five-gene signature, including TIMP-1, correlated with immunosuppressive cells and was found to be associated with overall survival. This study identified several metabolic mechanisms that could influence therapeutic options and prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lan Wang
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John Howard
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Amyn M. Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Room T3409, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Mumtaz V. Rojiani
- Department of Pathology, Penn State College of Medicine, Hershey, PA 17033, USA
- Room T3409, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +1-717-531-0003 (ext. 322422)
| |
Collapse
|
15
|
Wu Y, Li J, Zeng Y, Pu W, Mu X, Sun K, Peng Y, Shen B. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. Int J Oral Sci 2022; 14:40. [PMID: 35927232 PMCID: PMC9352673 DOI: 10.1038/s41368-022-00187-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Mu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
16
|
Clarke EJ, Johnson E, Caamaño Gutierrez E, Andersen C, Berg LC, Jenkins RE, Lindegaard C, Uvebrant K, Lundgren-Åkerlund E, Turlo A, James V, Jacobsen S, Peffers MJ. Temporal extracellular vesicle protein changes following intraarticular treatment with integrin α10β1-selected mesenchymal stem cells in equine osteoarthritis. Front Vet Sci 2022; 9:1057667. [PMID: 36504839 PMCID: PMC9730043 DOI: 10.3389/fvets.2022.1057667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Equine osteoarthritis (OA) is a heterogeneous, degenerative disease of the musculoskeletal system with multifactorial causation, characterized by a joint metabolic imbalance. Extracellular vesicles are nanoparticles involved in intracellular communication. Mesenchymal stem cell (MSC) therapy is a form of regenerative medicine that utilizes their properties to repair damaged tissues. Despite its wide use in veterinary practice, the exact mechanism of action of MSCs is not fully understood. The aim of this study was to determine the synovial fluid extracellular vesicle protein cargo following integrin α10β1-selected mesenchymal stem cell (integrin α10-MSC) treatment in an experimental model of equine osteoarthritis with longitudinal sampling. Methods Adipose tissue derived, integrin α10-MSCs were injected intraarticularly in six horses 18 days after experimental induction of OA. Synovial fluid samples were collected at day 0, 18, 21, 28, 35, and 70. Synovial fluid was processed and extracellular vesicles were isolated and characterized. Extracellular vesicle cargo was then analyzed using data independent acquisition mass spectrometry proteomics. Results A total of 442 proteins were identified across all samples, with 48 proteins differentially expressed (FDR ≤ 0.05) between sham-operated control joint without MSC treatment and OA joint treated with MSCs. The most significant pathways following functional enrichment analysis of the differentially abundant protein dataset were serine endopeptidase activity (p = 0.023), complement activation (classical pathway) (p = 0.023), and collagen containing extracellular matrix (p = 0.034). Due to the lack of an OA group without MSC treatment, findings cannot be directly correlated to only MSCs. Discussion To date this is the first study to quantify the global extracellular vesicle proteome in synovial fluid following MSC treatment of osteoarthritis. Changes in the proteome of the synovial fluid-derived EVs following MSC injection suggest EVs may play a role in mediating the effect of cell therapy through altered joint homeostasis. This is an important step toward understanding the potential therapeutic mechanisms of MSC therapy, ultimately enabling the improvement of therapeutic efficacy.
Collapse
Affiliation(s)
- Emily J Clarke
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Emily Johnson
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Eva Caamaño Gutierrez
- Computational Biology Facility, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Camilla Andersen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise C Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rosalind E Jenkins
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Centre for Drug Safety Science Bioanalytical Facility, Liverpool Shared Research Facilities, University of Liverpool, Liverpool, United Kingdom
| | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Agnieszka Turlo
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mandy J Peffers
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
17
|
Mattingly J, Li Y, Bihl JC, Wang J. The promise of exosome applications in treating central nervous system diseases. CNS Neurosci Ther 2021; 27:1437-1445. [PMID: 34636491 PMCID: PMC8611778 DOI: 10.1111/cns.13743] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes (EXs), a type of extracellular vesicles, are secreted from virtually all types of cells. EXs serve as cell-to-cell communicators by conveying proteins and nucleic acids with regulatory functions. Increasing evidence shows that EXs are implicated in the pathogenesis of central nervous system (CNS) diseases. Moreover, EXs have recently been highlighted as a new promising therapeutic strategy for in vivo delivery of nucleotides and drugs. Studies have revealed that infusion of EXs elicits beneficial effects on the CNS injury animal models. As compared to cell-based therapy, EXs-based therapy for CNS diseases has unique advantages, opening a new path for neurological medicine. In this review, we summarized the current state of knowledge of EXs, the roles and applications of EXs as a viable pathological biomarker, and EX-based therapy for CNS diseases.
Collapse
Affiliation(s)
- Jared Mattingly
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Yuchen Li
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Ji C. Bihl
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Jinju Wang
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| |
Collapse
|
18
|
Characterization and miRNA Profiling of Extracellular Vesicles from Human Osteoarthritic Subchondral Bone Multipotential Stromal Cells (MSCs). Stem Cells Int 2021; 2021:7232773. [PMID: 34667479 PMCID: PMC8520657 DOI: 10.1155/2021/7232773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Osteoarthritis (OA) is a heterogeneous disease in which the cross-talk between the cells from different tissues within the joint is affected as the disease progresses. Extracellular vesicles (EVs) are known to have a crucial role in cell-cell communication by means of cargo transfer. Subchondral bone (SB) resident cells and its microenvironment are increasingly recognised to have a major role in OA pathogenesis. The aim of this study was to investigate the EV production from OA SB mesenchymal stromal cells (MSCs) and their possible influence on OA chondrocytes. Small EVs were isolated from OA-MSCs, characterized and cocultured with chondrocytes for viability and gene expression analysis, and compared to small EVs from MSCs of healthy donors (H-EVs). OA-EVs enhanced viability of chondrocytes and the expression of chondrogenesis-related genes, although the effect was marginally lower compared to that of the H-EVs. miRNA profiling followed by unsupervised hierarchical clustering analysis revealed distinct microRNA sets in OA-EVs as compared to their parental MSCs or H-EVs. Pathway analysis of OA-EV miRNAs showed the enrichment of miRNAs implicated in chondrogenesis, stem cells, or other pathways related to cartilage and OA. In conclusion, OA SB MSCs were capable of producing EVs that could support chondrocyte viability and chondrogenic gene expression and contained microRNAs implicated in chondrogenesis support. These EVs could therefore mediate the cross-talk between the SB and cartilage in OA potentially modulating chondrocyte viability and endogenous cartilage regeneration.
Collapse
|
19
|
Extracellular vesicles as novel approaches for the treatment of osteoarthritis: a narrative review on potential mechanisms. J Mol Histol 2021; 52:879-891. [PMID: 34510315 DOI: 10.1007/s10735-021-10017-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a progressive degeneration of articular cartilage with involvement of synovial membrane, and subchondral bone. Current treatment approaches have focused on controlling the OA symptoms, pain, and inflammation. Recently, cell-based therapies, including the application of stem cells such as mesenchymal stem cells (MSCs), have been introduced for restoration of the articular cartilage. Despite promising outcomes, there are some limitations in the application of MSCs for OA treatment. It has been demonstrated that the regenerative potential of stem cells is related to the production of paracrine factors. Extracellular vehicles (EVs), the main component of cell secretome, are membrane-bounded structures that deliver biologically active agents. The delivery of molecules (e.g., nucleic acids, proteins, and lipids) leads to cell-to-cell communication and the alteration of cell functions. In this review, general characteristics of EVs, as well as their potential mechanisms in the prevention and treatment of OA were considered. Based on in vitro and in vivo studies, EVs have shown to contribute to cartilage regeneration via suppression of degenerative factors and regulation of chondrocyte function in the synthesis of extracellular matrix components. Also, they inhibit the progression of OA or protect the cartilage from degradation via their impact on inflammatory cytokines. The different signaling pathways of EVs against the pathologic features of OA were summarized in this review. According to the results obtained from several investigations, more investigations should be design to prove the safety and effectiveness of EVs in the treatment and prevention of OA progression.
Collapse
|
20
|
Lin J, Wang L, Lin J, Liu Q. The Role of Extracellular Vesicles in the Pathogenesis, Diagnosis, and Treatment of Osteoarthritis. Molecules 2021; 26:4987. [PMID: 34443573 PMCID: PMC8398019 DOI: 10.3390/molecules26164987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects the entire joint and has been a tremendous burden on the health care system worldwide. Although cell therapy has made significant progress in the treatment of OA and cartilage regeneration, there are still a series of problems. Recently, more and more evidence shows that extracellular vesicles (EVs) play an important role in the progression and treatment of OA. Here, we discuss that EVs from different cell sources not only participate in OA progression, but can also be used as effective tools for the diagnosis and treatment of OA. In addition, cell pretreatment strategies and EV tissue engineering play an increasingly prominent role in the field of OA treatment. This article will systematically review the latest developments in these areas. As stated above, it may provide new insights for improving OA and cartilage regeneration.
Collapse
Affiliation(s)
- Jianjing Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (J.L.); (J.L.)
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Li Wang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Jianhao Lin
- Arthritis Clinical and Research Center, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (J.L.); (J.L.)
- Arthritis Institute, Peking University, Beijing 100044, China
| | - Qiang Liu
- Arthritis Clinical and Research Center, Peking University People’s Hospital, No. 11 Xizhimen South Street, Beijing 100044, China; (J.L.); (J.L.)
- Arthritis Institute, Peking University, Beijing 100044, China
| |
Collapse
|
21
|
Miao C, Zhou W, Wang X, Fang J. The Research Progress of Exosomes in Osteoarthritis, With Particular Emphasis on the Mediating Roles of miRNAs and lncRNAs. Front Pharmacol 2021; 12:685623. [PMID: 34093208 PMCID: PMC8176107 DOI: 10.3389/fphar.2021.685623] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a kind of degenerative disease, which is caused by many factors such as aging, obesity, strain, trauma, congenital joint abnormalities, joint deformities. Exosomes are mainly derived from the invagination of intracellular lysosomes, which are released into the extracellular matrix after fusion of the outer membrane of multi vesicles with the cell membrane. Exosomes mediate intercellular communication and regulate the biological activity of receptor cells by carrying non-coding RNA, long noncoding RNAs (lncRNAs), microRNAs (miRNAs), proteins and lipids. Evidences show that exosomes are involved in the pathogenesis of OA. In view of the important roles of exosomes in OA, this paper systematically reviewed the roles of exosomes in the pathogenesis of OA, including the roles of exosomes in OA diagnosis, the regulatory mechanisms of exosomes in the pathogenesis, and the intervention roles of exosomes in the treatment of OA. Reviewing the roles of exosomes in OA will help to clarify the pathogenesis of OA and explore new diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.,Department of Pharmacy, School of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, China.,Institute of Prevention and Treatment of Rheumatoid Arthritis of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wanwan Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jihong Fang
- Department of Nursing, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China.,Department of Orthopedics, Anhui Provincial Children's Hospital, Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|