1
|
Tacias-Pascacio VG, Abellanas-Perez P, de Andrades D, Tavano O, Mendes AA, Berenguer-Murcia Á, Fernandez-Lafuente R. A comprehensive review of lipase-catalyzed acidolysis as a method for producing structured glycerides. Int J Biol Macromol 2025; 309:142878. [PMID: 40194578 DOI: 10.1016/j.ijbiomac.2025.142878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
The production of structured lipids is a current trend in food technology in order to enhance the properties of fats and oils. Lipases have been utilized in many instances for this purpose, in most examples in an immobilized form. In this review, after discussing the different strategies to produce artificial lipids using lipases (esterification, transesterification, interesterification), we have focused on acidolysis. The reaction commences with hydrolysis at one position of the triglyceride molecule and is followed by the esterification between the released hydroxyl group and the target fatty acid (although other carboxylic acids can be used, such as phenolic acid derivatives). This means that water plays a double role, as substrate in the first step and as an undesired by-product in the second one. Therefore, the control of water activity becomes critical in these reactions. This review discusses the advantages, possibilities and drawbacks of this strategy to produce tailor-made designed lipids, summarizing many of the papers related to this strategy. The summarized results show the complexity of this reaction that can make the understanding and reproducibility of the reactions complex if there are no strict controls of all parameters determining the final yields.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Pedro Abellanas-Perez
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Adriano A Mendes
- Institute of Chemistry, Federal University of Alfenas, Alfenas, MG 37130-001, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/ Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
2
|
Alaaeldin R, Sayin B, Polat Z, Kaya M, Kaban G. Effect of Argan Oil on Lipid Production by Yarrowia lipolytica NRRL YB-423. J Microbiol Biotechnol 2025; 35:e2410052. [PMID: 39947672 DOI: 10.4014/jmb.2410.10052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
The aim of this study was to investigate the effects of different concentrations of traditional, industrial, and cosmetic argan oils on lipid production by Yarrowia lipolytica NRRL YB-423 in a glucose-based medium. This study also explored the influence of different nitrogen concentrations on lipid and biomass production. Traditional argan oil had the highest oleic acid amount, whereas industrial and cosmetic argan oils had a higher linoleic acid amount. A lipid accumulation of 4.18 g/l was achieved with industrial argan oil, equivalent to approximately 65% lipid yield based on the dry cell weight. In addition, the results indicated that higher concentrations of argan oil led to increased lipid production. Correlation analysis showed that the addition of argan oil caused a change in fatty acid composition and an increase in linoleic acid amount. Linoleic acid increased in the presence of cosmetic argan oil (0.5 ml). The same effect was observed in the presence of 2 ml of traditional or industrial argan oil. In addition, when the amount of additional nitrogen was increased to 1 g/l, oleic acid amount increased in the control group. The nitrogen concentration used along with the argan oil type also caused changes in the correlations. The industrial argan oil group differed from the other groups in the presence of 1 g/l N. On the contrary, in the presence of an additional 0.5 g/l N, the industrial and traditional argan oil groups were closely correlated with each other.
Collapse
Affiliation(s)
- Rouna Alaaeldin
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
| | - Bilge Sayin
- Department of Gastronomy and Culinary Arts, School of Tourism and Hotel Management, Ardahan University, Ardahan, Türkiye
| | - Zerrin Polat
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
| | - Mükerrem Kaya
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
- MK Consulting, Ata Teknokent, Erzurum, Türkiye
| | - Güzin Kaban
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
3
|
El Faqer A, Rabeh K, Alami M, Filali-Maltouf A, Belkadi B. In Silico Identification and Characterization of Fatty Acid Desaturase ( FAD) Genes in Argania spinosa L. Skeels: Implications for Oil Quality and Abiotic Stress. Bioinform Biol Insights 2024; 18:11779322241248908. [PMID: 38711943 PMCID: PMC11072076 DOI: 10.1177/11779322241248908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Fatty acid desaturase (FAD) is the key enzyme that leads to the formation of unsaturated fatty acids by introducing double bonds into hydrocarbon chains, and it plays a critical role in plant lipid metabolism. However, no data are available on enzyme-associated genes in argan trees. In addition, a candidate gene approach was adopted to identify and characterize the gene sequences of interest that are potentially involved in oil quality and abiotic stress. Based on phylogenetic analyses, 18 putative FAD genes of Argania spinosa L. (AsFAD) were identified and assigned to three subfamilies: stearoyl-ACP desaturase (SAD), Δ-12 desaturase (FAD2/FAD6), and Δ-15 desaturase (FAD3/FAD7). Furthermore, gene structure and motif analyses revealed a conserved exon-intron organization among FAD members belonging to the various oil crops studied, and they exhibited conserved motifs within each subfamily. In addition, the gene structure shows a wide variation in intron numbers, ranging from 0 to 8, with two highly conserved intron phases (0 and 1). The AsFAD and AsSAD subfamilies consist of three (H(X)2-4H, H(X)2-3HH, and H/Q (X)2-3HH) and two (EEN(K)RHG and DEKRHE) conserved histidine boxes, respectively. A set of primer pairs were designed for each FAD gene, and tested on DNA extracted from argan leaves, in which all amplicons of the expected size were produced. These findings of candidate genes in A spinosa L. will provide valuable knowledge that further enhances our understanding of the potential roles of FAD genes in the quality of oil and abiotic stress in the argan tree.
Collapse
Affiliation(s)
- Abdelmoiz El Faqer
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Karim Rabeh
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Alami
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Bouchra Belkadi
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
4
|
Atsakou AE, Remonatto D, Júnior RHM, Paz-Cedeno FR, Masarin F, Andrade GSS, de Lucca Gattas EA, de Paula AV. Synthesis of dietary lipids from pumpkin ( Cucurbita pepo. L) oil obtained by enzymatic extraction: a sustainable approach. 3 Biotech 2023; 13:358. [PMID: 37822549 PMCID: PMC10562325 DOI: 10.1007/s13205-023-03781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
This study aimed to assess the nutritional properties of dietary lipids obtained through the modification of aqueous enzymatically extracted pumpkin seed (Cucurbita pepo. L) oil. The optimal growth conditions for producing pectinase using strain Aspergillus sp. 391 were determined, and partial characterization of pectinase and commercial cellulase was conducted. The enzymatic extraction was performed at pH 4.0, 50 °C, for 24 h, using a combination of pectinase and cellulase for optimum effectiveness. The crude oil obtained was analyzed for acid, peroxide, and fatty acid composition. The study found a high amount of unsaturated fatty acids, mainly linoleic acid (C18:2), and a 59% oil recovery rate. Subsequently, this oil was subjected to enzymatic acidolysis with capric acid in solvent-free media, catalyzed by lipase Lipozyme RM IM®, resulting in a product with a higher incorporation degree (48.39 ± 0.5 mol%), observed after 24 h at 60 °C using molar ratio oil:acid capric of 1:9 (run 4). The nutritional properties of this oil were improved.
Collapse
Affiliation(s)
- Abra Eli Atsakou
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Daniela Remonatto
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Rodney Helder Miotti Júnior
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Fernando Roberto Paz-Cedeno
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | - Fernando Masarin
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| | | | | | - Ariela Veloso de Paula
- School of Pharmaceutical Sciences (FCF), São Paulo State University (UNESP), Araraquara, SP CEP 14800-903 Brazil
| |
Collapse
|
5
|
Remonatto D, Santaella N, Lerin LA, Bassan JC, Cerri MO, de Paula AV. Solvent-Free Enzymatic Synthesis of Dietary Triacylglycerols from Cottonseed Oil in a Fluidized Bed Reactor. Molecules 2023; 28:5384. [PMID: 37513254 PMCID: PMC10384263 DOI: 10.3390/molecules28145384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The synthesis of structured lipids with nutraceutical applications, such as medium-long-medium (MLM) triacylglycerols, via modification of oils and fats represents a challenge for the food industry. This study aimed to synthesize MLM-type dietary triacylglycerols by enzymatic acidolysis of cottonseed oil and capric acid (C10) catalyzed by Lipozyme RM IM (lipase from Rhizomucor miehei) in a fluidized bed reactor (FBR). After chemical characterization of the feedstock and hydrodynamic characterization of the reactor, a 22 central composite rotatable design was used to optimize capric acid incorporation. The independent variables were cycle number (20-70) and cottonseed oil/capric acid molar ratio (1:2-1:4). The temperature was set at 45 °C. The best conditions, namely a 1:4 oil/acid molar ratio and 80 cycles (17.34 h), provided a degree of incorporation of about 40 mol%, as shown by compositional analysis of the modified oil. Lipozyme RM IM showed good operational stability (kd = 2.72 × 10-4 h-1, t1/2 = 2545.78 h), confirming the good reuse capacity of the enzyme in the acidolysis of cottonseed oil with capric acid. It is concluded that an FBR configuration is a promising alternative for the enzymatic synthesis of MLM triacylglycerols.
Collapse
Affiliation(s)
- Daniela Remonatto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Núbia Santaella
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Lindomar Alberto Lerin
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara (UNIFE), Via Luigi Borsari, 46, 44121 Ferrara, Italy
| | - Juliana Cristina Bassan
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
- State Center for Technological Education Paula Souza, Faculty of Technology of Barretos (FATEC), Barretos 14780-060, SP, Brazil
| | - Marcel Otávio Cerri
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| | - Ariela Veloso de Paula
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil
| |
Collapse
|
6
|
Taous F, El Ghali T, Marah H, Laraki K, Islam M, Cannavan A, Kelly S. Geographical Classification of Authentic Moroccan Argan Oils and the Rapid Detection of Soya and Sunflower Oil Adulteration with ATR-FTIR Spectroscopy and Chemometrics. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Gharby S, Charrouf Z. Argan Oil: Chemical Composition, Extraction Process, and Quality Control. Front Nutr 2022; 8:804587. [PMID: 35187023 PMCID: PMC8850956 DOI: 10.3389/fnut.2021.804587] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Argan oil is considered a relatively international product exported from Morocco, although different companies in Europe and North America distribute argan oil around the globe. Argan oil is non-refined vegetable oil, of the more well-known “virgin oil” type, is produced from the argan tree [Argania spinosa (L.) Skeels]. The argan tree is deemed to be an important forest species from both social and economic standpoints. Argan oil has rapidly emerged as an important product able to bring more income to the local population. In addition, it also has important environmental implications, owing to its ability to stand against desert progression. Currently, argan oil is mainly produced by women's cooperatives in Morocco using a semi-industrial mechanical extraction process. This allows the production of high-quality argan oil. Depending on the method used to prepare argan kernels, two types of argan oil can be obtained: food or cosmetic grade. Cosmetic argan oil is prepared from unroasted kernels, whereas food argan oil is achieved by cold pressing kernels roasted for a few minutes. Previously, the same food argan oil was prepared exclusively by women according to a laborious ancestral process. Extraction technology has been evolved to obtain high-quality argan oil at a large scale. The extraction process and several accompanying parameters can influence the quality, stability, and purity of argan oil. In view of this, the present review discusses different aspects related to argan oil chemical composition along with its nutritional and cosmetic values. Similarly, it details different processes used to prepare argan oil, as well as its quality control, oxidative stability, and authenticity assessment.
Collapse
Affiliation(s)
- Said Gharby
- Laboratory Biotechnology, Materials and Environment, Department of Chemistry and Physics, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Taroudant, Morocco
- *Correspondence: Said Gharby
| | - Zoubida Charrouf
- Laboratory of Plant Chemistry and Organic and Bioorganic Synthesis, Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Morocco
- Zoubida Charrouf
| |
Collapse
|