1
|
Vakili S, Samare-Najaf M, Karimi A, Jahromi BN, Mohit M, Hashempur MH. Lycopene in male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4817-4835. [PMID: 39656221 DOI: 10.1007/s00210-024-03520-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/06/2024] [Indexed: 04/11/2025]
Abstract
Male infertility is a major concern around the world, and efforts to find effective therapies to improve reproductive results are continuing. Factors such as genetics, hormonal disorders, lifestyle, and environmental pollutants have been mentioned as the pathoetiology of male infertility. The treatment of male infertility is far from optimal despite the recent signs of progress provided by assisted reproductive technology. Therefore, many efforts are being made to improve the therapeutical approaches to male infertility, which generally target the factors involved in the pathophysiology of the disease. Lycopene is a naturally occurring pigment belonging to the carotenoid family, which imparts a vibrant red color to various fruits and vegetables. It is widely assumed that lycopene may be an optimal option for the improvement of male fertility, however, the verification its therapeutic potential in male infertility has not been comprehensively reviewed. The study discusses the ability of lycopene to improve semen parameters, including sperm morphology, and motility which are important determinants of male reproductive health. Moreover, lycopene's capacity to regulate sex hormones, such as testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which play crucial roles in sperm production and maturation is explained. Additionally, lycopene effects on specific signaling pathways involved in male fertility, including prokineticin-2 (PROK2) and PI3K/Akt pathways, that influence sperm function are clarified. Furthermore, the impacts of lycopene as a potent antioxidant in defending against oxidative stress, a leading cause of male infertility, are presented. Overall, the results indicate that lycopene may have beneficial effects on improving male fertility by increasing sperm parameters, modulating sex hormones and signaling pathways, and providing antioxidant protection. Due to limited reports, additional clinical data is required to confirm the positive effects of lycopene on male fertility in humans.
Collapse
Affiliation(s)
- Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Aliasghar Karimi
- Research Center for Neuromodulation and Pain, NAB Pain Clinic, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Mohit
- Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Doghish AS, Elsakka EGE, Moustafa HAM, Ashraf A, Mageed SSA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Elimam H, Rizk NI, Omran SA, Farag SA, Youssef DG, Abulsoud AI. Harnessing the power of miRNAs for precision diagnosis and treatment of male infertility. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3271-3296. [PMID: 39535597 DOI: 10.1007/s00210-024-03594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Infertility is a multifactorial reproductive system disorder, and most infertility cases occur in men. Semen testing is now thought to be the most important diagnostic test for infertile men; nonetheless, because of its limitations, the cause of infertility remains unknown for 40% of infertile men. Semen assessment's shortcomings indicate the need for improved and innovative diagnostic techniques and biomarkers worldwide. Non-coding RNAs with a length of roughly 18-22 nucleotides are called microRNAs (miRNAs). Most of our protein-coding genes are post-transcriptionally regulated by them. These molecules are unusual in bodily fluids, and aberrant variations in their expression can point to specific conditions like infertility. As a result, fresh potential biomarkers for the diagnosis and prognosis of various forms of male infertility may be represented by miRNAs. This review examined the most recent research revealing the association between different miRNAs' functions in male infertility and their expression patterns. Also, it aims to figure out the most recent strategies that could be applied for using such miRNAs as possible therapeutic targets for infertility treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City , 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Nasr City, 11786, Egypt, Cairo
| | - Sarah A Omran
- Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Shimaa A Farag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Donia G Youssef
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, El-Salam City, Cairo, 11785, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
3
|
Salman A, Radwan AF, Shaker OG, A A, Sayed GA. A comparison of the expression patterns and diagnostic capability of the ncRNAs NEAT1 and miR-34a in non-obstructive azoospermia and severe oligospermia. Hum Genomics 2025; 19:35. [PMID: 40165339 PMCID: PMC11959825 DOI: 10.1186/s40246-025-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Infertility is a major global health problem, affecting 8-12% of couples worldwide, with male causes contributing to approximately 50% of cases. Notably, around 15% of infertile men are azoospermic. Consequently, there is a critical necessity to find noninvasive biomarkers to help in diagnosing and assessing the susceptibility of patients with various infertility disorders. This study is designed to determine the roles of NEAT1 and miR-34a as diagnostic and susceptibility biomarkers for non-obstructive azoospermia and severe oligospermia. The interactions between these non-coding RNA (ncRNAs) were explored, along with their correlations to hormonal profiles and clinical parameters like sperm count and motility. The potential of serum NEAT1 and miR-34a as diagnostic biomarkers for these conditions was explored. The study included 100 participants: 40 non-obstructive azoospermia patients, 40 severe oligospermia patients, and 20 healthy controls. Quantitative real-time PCR and transcriptomics-based bioinformatics tools were employed to explore the co-expression networks and molecular interactions of NEAT1, miR-34a, SIRT1, and their associated hormonal and genetic pathways. Results indicated that NEAT1 was significantly downregulated in severe oligospermia patients, while its levels in non-obstructive azoospermia patients did not differ significantly from healthy controls. Furthermore, serum miR-34a expression was considerably upregulated in both patient groups compared to controls. This study highlights the promise of serum NEAT1 and miR-34a as diagnostic markers for non-obstructive azoospermia and severe oligospermia. These findings provide valuable insights into male infertility and indicate potential avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
- Department of Pharmacy, Kut University College, Wasit, 52001, Iraq
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Kasr AlAiny Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Adel A
- Department of Andrology, Sexology, and STIs, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt.
| |
Collapse
|
4
|
Olumide OB, Godwin AI, Etukudoh NS, Dutta S, Uchejeso OM, Titilayo JO, Christian IO, Temitope ST, Sengupta P. Evaluation of serum inhibin B and inhibin B/FSH ratio in the diagnosis of non-obstructive azoospermia and oligozoospermia. Horm Mol Biol Clin Investig 2025; 46:39-46. [PMID: 39427235 DOI: 10.1515/hmbci-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Infertility affects approximately 15 % of couples globally, with 50 % cases of male factor infertility. Precise assessment of spermatogenesis is essential for evaluating male infertility. Recent studies suggest serum inhibin B as a promising biomarker for testicular function. This study aims to evaluate the diagnostic utility of serum inhibin B in predicting male infertility, particularly focusing on its relationship with sperm count. METHODS A cross-sectional study was conducted on 80 adult men (mean age 31.4 ± 6.89 years) presenting with infertility at gynecology and urology outpatient departments. Semen analysis was performed following WHO (2010) guidelines, and serum inhibin B levels were quantified. The correlation between serum inhibin B levels and sperm parameters was assessed using Pearson's correlation test. Receiver operating characteristic (ROC) curve analysis was employed to evaluate the diagnostic accuracy of serum inhibin B and the inhibin B/FSH ratio for non-obstructive azoospermia (NOA) and oligozoospermia. RESULTS A significant positive correlation was observed between serum inhibin B and sperm count (r=0.94, p<0.001). ROC analysis demonstrated that the inhibin B/FSH ratio had the highest diagnostic accuracy for NOA and oligozoospermia (AUC=0.986), with sensitivity of 100 % and specificity of 91.67 %. Serum inhibin B alone also showed high diagnostic value (AUC=0.965 for NOA and 0.969 for oligozoospermia). CONCLUSIONS Serum inhibin B is a reliable biomarker for assessing male infertility, particularly in evaluating spermatogenic function. The inhibin B/FSH ratio provides superior diagnostic accuracy for NOA and oligozoospermia, offering valuable clinical utility in male infertility diagnosis.
Collapse
Affiliation(s)
- Olaniru B Olumide
- Department of Chemical Pathology, Jos University Teaching Hospital Jos, Jos, Plateau State, Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Adoga I Godwin
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Nkereuwem S Etukudoh
- Department of Chemical Pathology, Federal School of Medical Laboratory Science Jos, Jos, Plateau State, Nigeria
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, UAE
| | - Obeta M Uchejeso
- Department of Chemical Pathology, Federal School of Medical Laboratory Science Jos, Jos, Plateau State, Nigeria
- Department of Human Physiology, University of Jos, Jos, Plateau State, Nigeria
| | - Johnson O Titilayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Isichei O Christian
- Department of Chemical Pathology, Faculty of Clinical Sciences, University of Jos, Jos, Plateau State, Nigeria
| | - Selowo T Temitope
- Department of Chemical Pathology, Jos University Teaching Hospital Jos, Jos, Plateau State, Nigeria
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE
| |
Collapse
|
5
|
Jamalirad H, Jajroudi M, Khajehpour B, Sadighi Gilani MA, Eslami S, Sabbaghian M, Vakili Arki H. AI predictive models and advancements in microdissection testicular sperm extraction for non-obstructive azoospermia: a systematic scoping review. Hum Reprod Open 2024; 2025:hoae070. [PMID: 39764557 PMCID: PMC11700607 DOI: 10.1093/hropen/hoae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/03/2024] [Indexed: 01/31/2025] Open
Abstract
STUDY QUESTION How accurately can artificial intelligence (AI) models predict sperm retrieval in non-obstructive azoospermia (NOA) patients undergoing micro-testicular sperm extraction (m-TESE) surgery? SUMMARY ANSWER AI predictive models hold significant promise in predicting successful sperm retrieval in NOA patients undergoing m-TESE, although limitations regarding variability of study designs, small sample sizes, and a lack of validation studies restrict the overall generalizability of studies in this area. WHAT IS KNOWN ALREADY Previous studies have explored various predictors of successful sperm retrieval in m-TESE, including clinical and hormonal factors. However, no consistent predictive model has yet been established. STUDY DESIGN SIZE DURATION A comprehensive literature search was conducted following PRISMA-ScR guidelines, covering PubMed and Scopus databases from 2013 to 15 May 2024. Relevant English-language studies were identified using Medical Subject Headings (MeSH) terms. We also used PubMed's 'similar articles' and 'cited by' features for thorough bibliographic screening to ensure comprehensive coverage of relevant literature. PARTICIPANTS/MATERIALS SETTING METHODS The review included studies on patients with NOA where AI-based models were used for predicting m-TESE outcomes, by incorporating clinical data, hormonal levels, histopathological evaluations, and genetic parameters. Various machine learning and deep learning techniques, including logistic regression, were employed. The Prediction Model Risk of Bias Assessment Tool (PROBAST) evaluated the bias in the studies, and their quality was assessed using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guidelines, ensuring robust reporting standards and methodological rigor. MAIN RESULTS AND THE ROLE OF CHANCE Out of 427 screened articles, 45 met the inclusion criteria, with most using logistic regression and machine learning to predict m-TESE outcomes. AI-based models demonstrated strong potential by integrating clinical, hormonal, and biological factors. However, limitations of the studies included small sample sizes, legal barriers, and challenges in generalizability and validation. While some studies featured larger, multicenter designs, many were constrained by sample size. Most studies had a low risk of bias in participant selection and outcome determination, and two-thirds were rated as low risk for predictor assessment, but the analysis methods varied. LIMITATIONS REASONS FOR CAUTION The limitations of this review include the heterogeneity of the included research, potential publication bias and reliance on only two databases (PubMed and Scopus), which may limit the scope of the findings. Additionally, the absence of a meta-analysis prevents quantitative assessment of the consistency of models. Despite this, the review offers valuable insights into AI predictive models for m-TESE in NOA. WIDER IMPLICATIONS OF THE FINDINGS The review highlights the potential of advanced AI techniques in predicting successful sperm retrieval for NOA patients undergoing m-TESE. By integrating clinical, hormonal, histopathological, and genetic factors, AI models can enhance decision-making and improve patient outcomes, reducing the number of unsuccessful procedures. However, to further enhance the precision and reliability of AI predictions in reproductive medicine, future studies should address current limitations by incorporating larger sample sizes and conducting prospective validation trials. This continued research and development is crucial for strengthening the applicability of AI models and ensuring broader clinical adoption. STUDY FUNDING/COMPETING INTERESTS The authors would like to acknowledge Mashhad University of Medical Sciences, Mashhad, Iran, for financial support (Grant ID: 4020802). The authors declare no competing interests. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Hossein Jamalirad
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdie Jajroudi
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Khajehpour
- Midwifery Department, Faculty of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Eslami
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hassan Vakili Arki
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
7
|
de Rose MB, Sicard AB, Aguiar NA, Onório BDO, Almendra AAR, Matheus WE, Garolla A, Foresta C, Braga DPDAF, Setti AS, Borges Jr. E. Two livebirths achieved in cases of hypergonadotropic hypogonadism nonobstructive azoospermia, treated with GnRH agonist and gonadotrophins: a case series and review of the literature. JBRA Assist Reprod 2024; 28:521-525. [PMID: 38875134 PMCID: PMC11349252 DOI: 10.5935/1518-0557.20240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male factor infertility. It results form from either primary or secondary testicular failure. Here, we report cases of two patients with NOA due to maturation arrest and increased serum FSH, treated with GnRH agonist and gonadotrophins. The two NOA patients underwent a pharmacological treatment consisting of pituitary desensibilization using a GnRH agonist and testicular stimulation using menotropin. Testicular stimulation started one month after the beginning of GnRH agonist treatment. The female partner underwent controlled ovarian stimulation (COS) followed by intracytoplasmic sperm injection (ICSI). On the third day of the cycle, menotropin daily doses was administered. When at least one follicle ≥14 mm was visualized, pituitary blockage was performed using GnRH antagonist ganirelix. When three or more follicles attained a mean diameter of ≥17 mm, triptorelin acetate was administered to trigger final follicular maturation. Oocyte retrieval was performed 35 hours later. After treatment, male partner blood levels of the FSH, LH, decreased and total testosterone were increased. Spermatozoa was observed after semen collection in both cases. After COS, oocytes were retrieved and ICSI was performed. Embryos were biopsied for preimplantation genetic testing (PGT) and those considered euploidy were transferred resulting in positive implantation, ongoing pregnancy, and livebirth on both cases. In this report we present a successful strategy for hypergonadotropic hypogonadism AOA men, as an alternative approach to the surgical testicular sperm recovery. Nevertheless, prospective randomized trials are needed to confirm our findings.
Collapse
Affiliation(s)
- Mauro Bibancos de Rose
- Fertility Medical Group. São Paulo - SP, Brazil
- Urology Department - Pontifícia Universidade Católica de
Campinas - PUCAMP. Campinas - SP, Brazil
| | - Arhon Bizelli Sicard
- Urology Department - Pontifícia Universidade Católica de
Campinas - PUCAMP. Campinas - SP, Brazil
| | - Natalia Alvarenga Aguiar
- Urology Department - Pontifícia Universidade Católica de
Campinas - PUCAMP. Campinas - SP, Brazil
| | | | | | | | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine -
University of Pandova. Pandova - PD, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine -
University of Pandova. Pandova - PD, Italy
| | | | | | - Edson Borges Jr.
- Fertility/FERTGROUP-Medicina Reprodutiva. São Paulo - SP,
Brazil
| |
Collapse
|
8
|
Morenas R, Singh D, Hellstrom WJG. Thyroid disorders and male sexual dysfunction. Int J Impot Res 2024; 36:333-338. [PMID: 37752332 DOI: 10.1038/s41443-023-00768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Though early research suggested that thyroid hormones were not involved with the testes, male spermatogenesis, or erectile function, investigations on this topic over the past few decades have increased and shed new light. A literature review of studies conducted between 1963 and 2022 regarding male sexual dysfunction (SD) and thyroid disorders was performed to define the diagnostic consideration, pathophysiology, and management of SD secondary to thyroid dysregulation. This article provides evidence and interpretation of prior clinical and preclinical studies and contextualizes these studies for clinical practice. Clinical manifestations of SDs included erectile and ejaculatory dysfunction, impaired spermatogenesis, and disruption of the hypothalamic-pituitary-gonadal axis. Our aim of this communication was to perform a literature review detailing the impact of thyroid disorders on male SD. We hope to provide a framework for practicing urologists, endocrinologists, or general practitioners when evaluating patients with concurrent thyroid and male SD. It is important to recognize that thyroid disorders can be an important part of the pathophysiology of male SD in patients. Future research studies are needed to further elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Rohan Morenas
- Department of Urology, Section of Andrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Danish Singh
- Department of Urology, Section of Andrology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Wayne J G Hellstrom
- Department of Urology, Section of Andrology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
9
|
Zafar MI, Chen X. Effects of Calorie Restriction on Preserving Male Fertility Particularly in a State of Obesity. Curr Obes Rep 2024; 13:256-274. [PMID: 38489002 DOI: 10.1007/s13679-024-00557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE OF REVIEW Highlight the importance of exploring nutritional interventions that could be applied as alternative or supplementary therapeutic strategies to enhance men's fertility. RECENT FINDINGS Lifestyle choices have prompted extensive discussions regarding its implications and applications as a complementary therapy. The growing concern over the decline in sperm quality underscores the urgency of investigating these alternative interventions. Calorie restriction (CR) has emerged as a promising strategy to improve male fertility. The efficacy of CR depends on factors like age, ethnicity and genetics. Clinical studies, such as CALERIE, have shown an improvement in serum testosterone level and sexual drive in men with or without obesity. Additionally, CR has been shown to positively impact sperm count and motility; however, its effects on sperm morphology and DNA fragmentation remain less clear, and the literature has shown discrepancies, mainly due to the nature of technically dependent assessment tools. The review advocates a personalized approach to CR, considering individual health profiles to maximize its benefits. It underscores the need for routine, accessible diagnostic techniques in male reproductive health. It suggests that future research should focus on personalized dietary interventions to improve male fertility and overall well-being in individuals with or without obesity and unravel CR's immediate and lasting effects on semen parameters in men without obesity.
Collapse
Affiliation(s)
- Mohammad Ishraq Zafar
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| | - Xiao Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, N1 Shangcheng Avenue, Yiwu, Zhejiang, China.
| |
Collapse
|
10
|
Sengupta P, Dutta S, Jegasothy R, Slama P, Cho CL, Roychoudhury S. 'Intracytoplasmic sperm injection (ICSI) paradox' and 'andrological ignorance': AI in the era of fourth industrial revolution to navigate the blind spots. Reprod Biol Endocrinol 2024; 22:22. [PMID: 38350931 PMCID: PMC10863146 DOI: 10.1186/s12958-024-01193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
The quandary known as the Intracytoplasmic Sperm Injection (ICSI) paradox is found at the juncture of Assisted Reproductive Technology (ART) and 'andrological ignorance' - a term coined to denote the undervalued treatment and comprehension of male infertility. The prevalent use of ICSI as a solution for severe male infertility, despite its potential to propagate genetically defective sperm, consequently posing a threat to progeny health, illuminates this paradox. We posit that the meteoric rise in Industrial Revolution 4.0 (IR 4.0) and Artificial Intelligence (AI) technologies holds the potential for a transformative shift in addressing male infertility, specifically by mitigating the limitations engendered by 'andrological ignorance.' We advocate for the urgent need to transcend andrological ignorance, envisaging AI as a cornerstone in the precise diagnosis and treatment of the root causes of male infertility. This approach also incorporates the identification of potential genetic defects in descendants, the establishment of knowledge platforms dedicated to male reproductive health, and the optimization of therapeutic outcomes. Our hypothesis suggests that the assimilation of AI could streamline ICSI implementation, leading to an overall enhancement in the realm of male fertility treatments. However, it is essential to conduct further investigations to substantiate the efficacy of AI applications in a clinical setting. This article emphasizes the significance of harnessing AI technologies to optimize patient outcomes in the fast-paced domain of reproductive medicine, thereby fostering the well-being of upcoming generations.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University (GMU), Ajman, UAE.
| | - Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, UAE
| | - Ravindran Jegasothy
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Kuala Lumpur, Malaysia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Chak-Lam Cho
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
11
|
Sidhu A, Singla N. Antifertility effects of quinestrol in male lesser bandicoot rat, Bandicota bengalensis, and potential in managing rodent population under field conditions. Integr Zool 2024; 19:108-126. [PMID: 37231968 DOI: 10.1111/1749-4877.12733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Integrating fertility control techniques using steroid hormones after lethal control can help reduce post control rebuildup of rodent populations. The current study is the first to assess the antifertility effects of quinestrol in male lesser bandicoot rat, Bandicota bengalensis which is the predominant rodent pest species in Southeast Asia. Rats in different groups were fed bait containing 0.00%, 0.01%, 0.02%, and 0.03% quinestrol for 10 days in laboratory and evaluated immediately, and 15, 30, and 60 days after treatment discontinuation for effect on reproduction and other antifertility parameters. Effect of 0.03% quinestrol treatment for 15 days was also observed in managing rodent populations in groundnut crop fields. Treatment resulted in average consumption of 19.53 ± 1.80, 67.63 ± 5.50, and 246.67 ± 1.78 mg/kg bwt active ingredient by three treated groups of rats, respectively. No reproduction was observed in female rats mated with male rats treated with 0.03% quinestrol, even 30 days after cessation of treatment. Post-mortem examination showed a significant (P < 0.0001) effect of treatment on organ weights (testis, cauda epididymis, seminal vesicles, and prostate gland) and different sperm parameters (sperm motility, sperm viability, sperm count, and sperm abnormality) in the cauda epididymal fluid with partial reversibility after 60 days. A significant (P < 0.0001) effect of quinestrol on the histomorphology of testis and cauda epididymis was observed, suggesting its effect on spermatogenesis. Affected cell association and cell count in seminiferous tubules did not fully recover within 60 days of stopping treatment. Evaluation of the effects of quinestrol treatment in groundnut fields showed greater reductions in rodent activity in fields treated with 2% zinc phosphide followed by 0.03% quinestrol treatment as compared to fields treated with 2% zinc phosphide alone. Research concludes that quinestrol has the potential to reduce fecundity and post control rebuildup of B. bengalensis populations, but long-term studies of the effectiveness of quinestrol under large-scale field conditions are needed to use it as part of an integrated pest control program for rodents.
Collapse
Affiliation(s)
- Ajooni Sidhu
- Department of Zoology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Neena Singla
- Department of Zoology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
12
|
Cai P, Wang Y, Feng N, Zou H, Gu J, Yuan Y, Liu X, Liu Z, Bian J. Polystyrene nanoplastics aggravate reproductive system damage in obese male mice by perturbation of the testis redox homeostasis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2881-2893. [PMID: 37555767 DOI: 10.1002/tox.23923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/16/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
The potential impact of the combination of a high-fat diet (HFD) and polystyrene nanoplastics (PS-NPs) on fertility cannot be ignored, especially when the fertility rate is declining. However, it has not attracted considerable attention. In this study, an obese mouse model was established using an HFD, and the reproductive function of male mice was evaluated after intragastric administration of 100 μL of a 10 mg/mL PS-NP suspension for 4 weeks. By determining the morphology and vitality of sperm and related indicators of testosterone production, it was found that PS-NPs aggravated the destruction of sperm mitochondrial structure, decrease sperm activity, and testosterone production in HFD-fed mice. To comprehensively analyze the injury mechanism, the integrity of the blood testicular barrier (BTB) and the function of Leydig and Sertoli cells were further analyzed. It was found that PS-NPs could destroy BTB, promote the degeneration of Leydig cells, reduce the number of Sertoli cells, and decrease lactate secretion in HFD-fed mice. PS-NPs further interfered with redox homeostasis in the testicular tissues of HFD-fed mice. This study found that PS-NPs could aggravate the damage to the reproductive system of obese male mice by further perturbing its redox homeostasis and revealed the potential health risk of PS-NPs exposure under an HFD.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Yaling Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
A Comparative Cross-Platform Analysis to Identify Potential Biomarker Genes for Evaluation of Teratozoospermia and Azoospermia. Genes (Basel) 2022; 13:genes13101721. [PMID: 36292606 PMCID: PMC9602071 DOI: 10.3390/genes13101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
Male infertility is a global public health concern. Teratozoospermia is a qualitative anomaly of spermatozoa morphology, contributing significantly to male infertility, whereas azoospermia is the complete absence of spermatozoa in the ejaculate. Thus, there is a serious need for unveiling the common origin and/or connection between both of these diseases, if any. This study aims to identify common potential biomarker genes of these two diseases via an in silico approach using a meta-analysis of microarray data. In this study, a differential expression analysis of genes was performed on four publicly available RNA microarray datasets, two each from teratozoospermia (GSE6872 and GSE6967) and azoospermia (GSE145467 and GSE25518). From the analysis, 118 DEGs were found to be common to teratozoospermia and azoospermia, and, interestingly, sperm autoantigenic protein 17 (SPA17) was found to possess the highest fold change value among all the DEGs (9.471), while coiled-coil domain-containing 90B (CCDC90B) and coiled-coil domain-containing 91 (CCDC91) genes were found to be common among three of analyses, i.e., Network Analyst, ExAtlas, and GEO2R. This observation indicates that SPA17, CCDC90B, and CCDC91 genes might have significant roles to play as potential biomarkers for teratozoospermia and azoospermia. Thus, our study opens a new window of research in this area and can provide an important theoretical basis for the diagnosis and treatment of both these diseases.
Collapse
|
14
|
Dutta S, Sengupta P, Roychoudhury S, Chakravarthi S, Wang CW, Slama P. Antioxidant Paradox in Male Infertility: 'A Blind Eye' on Inflammation. Antioxidants (Basel) 2022; 11:167. [PMID: 35052671 PMCID: PMC8772926 DOI: 10.3390/antiox11010167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of male infertility involves various interlinked endogenous pathways. About 50% of the cases of infertility in men are idiopathic, and oxidative stress (OS) reportedly serves as a central mechanism in impairing male fertility parameters. The endogenous antioxidant system operates to conserve the seminal redox homeostasis required for normal male reproduction. OS strikes when a generation of seminal reactive oxygen species (ROS) overwhelms endogenous antioxidant capacity. Thus, antioxidant treatment finds remarkable relevance in the case of idiopathic male infertility or subfertility. However, due to lack of proper detection of OS in male infertility, use of antioxidant(s) in some cases may be arbitrary or lead to overuse and induction of 'reductive stress'. Moreover, inflammation is closely linked to OS and may establish a vicious loop that is capable of disruption to male reproductive tissues. The result is exaggeration of cellular damage and disruption of male reproductive tissues. Therefore, limitations of antioxidant therapy in treating male infertility are the failure in the selection of specific treatments targeting inflammation and OS simultaneously, two of the core mechanisms of male infertility. The present review aims to elucidate the antioxidant paradox in male infertility treatment, from the viewpoints of both induction of reductive stress as well as overlooking the inflammatory consequences.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd, Selaiyur, Chennai 600073, India;
| | - Pallav Sengupta
- School of Medical Sciences, Bharath Institute of Higher Education and Research (BIHER), 173 Agaram Main Rd, Selaiyur, Chennai 600073, India;
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | | | - Srikumar Chakravarthi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
- Physiology Unit, Faculty of Medicine, Bioscience and Nursing, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Chee Woon Wang
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, SP2, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia; (S.D.); (S.C.); (C.W.W.)
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|