1
|
Wu Z, Li L, Chen S, Gong Y, Liu Y, Jin T, Wang Y, Tang J, Dong Q, Yang B, Yang F, Dong W. Microbiota contribute to regulation of the gut-testis axis in seasonal spermatogenesis. THE ISME JOURNAL 2025; 19:wraf036. [PMID: 39999373 PMCID: PMC11964897 DOI: 10.1093/ismejo/wraf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Seasonal breeding is an important adaptive strategy for animals. Recent studies have highlighted the potential role of the gut microbiota in reproductive health. However, the relationship between the gut microbiota and reproduction in seasonal breeders remains unclear. In this study, we selected a unique single food source animal, the flying squirrel (Trogopterus xanthipes), as a model organism for studying seasonal breeding. By integrating transcriptomic, metabolomic, and microbiome data, we comprehensively investigated the regulation of the gut-metabolism-testis axis in seasonal breeding. Here, we demonstrated a significant spermatogenic phenotype and highly active spermatogenic transcriptional characteristics in the testes of flying squirrels during the breeding season, which were associated with increased polyamine metabolism, primarily involving spermine and γ-amino butyric acid. Moreover, an enrichment of Ruminococcus was observed in the large intestine during the breeding season and may contribute to enhanced methionine biosynthesis in the gut. Similar changes in Ruminococcus abundance were also observed in several other seasonal breeders. These findings innovatively revealed that reshaping the gut microbiota regulates spermatogenesis in seasonal breeders through polyamine metabolism, highlighting the great potential of the gut-testis axis in livestock animal breeding and human health management.
Collapse
Affiliation(s)
- Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Tang
- Shaanxi Institute of Zoology, Xi'an, Shaanxi 710032, China
| | - Qian Dong
- Department of Thyroid and Breast Surgery, Shenzhen Luohu Hospital Group Luohu People’s Hospital (Third Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong 518000, China
| | - Bangzhu Yang
- Luonan Science and Technology Bureau, Shangluo, Shaanxi 726000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Podgrajsek R, Hodzic A, Stimpfel M, Kunej T, Peterlin B. Insight into the complexity of male infertility: a multi-omics review. Syst Biol Reprod Med 2024; 70:73-90. [PMID: 38517373 DOI: 10.1080/19396368.2024.2317804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
Male infertility is a reproductive disorder, accounting for 40-50% of infertility. Currently, in about 70% of infertile men, the cause remains unknown. With the introduction of novel omics and advancement in high-throughput technology, potential biomarkers are emerging. The main purpose of our work was to overview different aspects of omics approaches in association with idiopathic male infertility and highlight potential genes, transcripts, non-coding RNA, proteins, and metabolites worth further exploring. Using the Gene Ontology (GO) analysis, we aimed to compare enriched GO terms from each omics approach and determine their overlapping. A PubMed database screening for the literature published between February 2014 and June 2022 was performed using the keywords: male infertility in association with different omics approaches: genomics, epigenomics, transcriptomics, ncRNAomics, proteomics, and metabolomics. A GO enrichment analysis was performed using the Enrichr tool. We retrieved 281 global studies: 171 genomics (DNA level), 21 epigenomics (19 of methylation and two histone residue modifications), 15 transcriptomics, 31 non-coding RNA, 29 proteomics, two protein posttranslational modification, and 19 metabolomics studies. Gene ontology comparison showed that different omics approaches lead to the identification of different molecular factors and that the corresponding GO terms, obtained from different omics approaches, do not overlap to a larger extent. With the integration of novel omics levels into the research of idiopathic causes of male infertility, using multi-omic systems biology approaches, we will be closer to finding the potential biomarkers and consequently becoming aware of the entire spectrum of male infertility, their cause, prognosis, and potential treatment.
Collapse
Affiliation(s)
- Rebeka Podgrajsek
- Department of Human Reproduction, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Alenka Hodzic
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Novo mesto, Novo Mesto, Slovenia
| | - Martin Stimpfel
- Department of Human Reproduction, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
4
|
Babaei K, Aziminezhad M, Mirzajani E, Mozdarani H, Sharami SH, Norollahi SE, Samadani AA. A critical review of the recent concept of regulatory performance of DNA Methylations, and DNA methyltransferase enzymes alongside the induction of immune microenvironment elements in recurrent pregnancy loss. Toxicol Rep 2024; 12:546-563. [PMID: 38798987 PMCID: PMC11127471 DOI: 10.1016/j.toxrep.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Recurrent pregnancy Loss (RPL)is a frequent and upsetting condition. Besides the prevalent cause of RPL including chromosomal defects in the embryo,the effect of translational elements like alterations of epigenetics are of great importance. The emergence of epigenetics has offered a fresh outlook on the causes and treatment of RPL by focusing on the examination of DNA methylation. RPL may arise as a result of aberrant DNA methylation of imprinted genes, placenta-specific genes, immune-related genes, and sperm DNA, which may have a direct or indirect impact on embryo implantation, growth, and development. Moreover, the distinct immunological tolerogenic milieu established at the interface between the mother and fetus plays a crucial role in sustaining pregnancy. Given this, there has been a great deal of interest in the regulation of DNA methylation and alterations in the cellular components of the maternal-fetal immunological milieu. The research on DNA methylation's role in RPL incidence and the control of the mother-fetal immunological milieu is summed up in this review.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Liao C, Peng TW, Li XM, Chen ZC, Wang MY, Ye X, Lan Y, Fu X, An G. Identification of ferroptotic genes and phenotypes in idiopathic nonobstructive azoospermia. Syst Biol Reprod Med 2023; 69:410-422. [PMID: 37782778 DOI: 10.1080/19396368.2023.2257352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023]
Abstract
Effective treatments for nonobstructive azoospermia (NOA), which affects 1% of all men globally, are limited by undefined pathogenic mechanisms, especially in idiopathic NOA (iNOA). Here, we tried to identify the functional ferroptosis-related genes and phenotypes involved in iNOA. Differentially expressed ferroptotic genes were identified from iNOA mRNA microarray datasets by bioinformatic analyses, and these ferroptotic genes were subsequently filtered by various algorithms. Then, receiver operating characteristic (ROC) curves were generated to evaluate the diagnostic ability of the abovementioned genes for iNOA. Generally, 11 differentially expressed ferroptotic genes were downregulated, and five genes were upregulated in iNOA samples. Four genes, including DUSP1, GPX4, HSD17B11, and SLC2A8, were technically selected and determined to be potential biomarkers for iNOA. Subsequently, similar expression levels were validated at both the RNA and protein levels in the iNOA specimens. Finally, morphologic and biochemical assays were applied to define the ferroptotic phenotypes in testes. The ferroptotic features, like shrunken mitochondria with electron-dense membranes and a reduction in cristae were observed across various cell types within iNOA patients, accompanied by the overload of ferrous ions and increased lipid peroxidation production. Our findings demonstrated that these ferroptosis genes could be involved in the underlying pathogenesis mechanisms of iNOA by regulating ferroptosis and serve as potential diagnostic biomarkers. Also, the ferroptotic phenotypes were identified in iNOA patients.
Collapse
Affiliation(s)
- Chen Liao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Tian-Wen Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xiao-Min Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Zhi-Cong Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Mu-Ye Wang
- Department of Anesthesiology, Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affifiliated Hospital of Guangzhou Medical University, Guangdong, P.R. China
| | - Xin Ye
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Yu Lan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Xin Fu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine; Guangdong Provincial Key Laboratory for Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affifiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, P.R. China
| |
Collapse
|
6
|
Zhu W, Mao J, Qin J, Chen X. CFAP61 knockdown aggravates male infertility by inhibiting testosterone secretion by Leydig cells via the MAPK/COX-2 pathway. Funct Integr Genomics 2023; 23:340. [PMID: 37982895 DOI: 10.1007/s10142-023-01271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to elucidate the roles of cilia- and flagella-associated protein 61 (CFAP61) in male infertility and its underlying mechanisms. CFAP61 expression levels in the testicular tissues of male patients with infertility were determined using quantitative real-time polymerase chain reaction, immunohistochemical assay, and western blotting. Moreover, the specific roles of CFAP61 in male infertility were evaluated using cell counting kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, and enzyme-linked immunosorbent assays. Here, CFAP61 was expressed at low levels in the testicular tissues of male patients with infertility. Functionally, CFAP61 knockdown reduced the Leydig cell viability and testosterone secretion and enhanced apoptosis. A mechanistic study further revealed that silencing CFAP61 promoted the expression levels of mitogen-activated protein kinase (MAPK)/cyclooxygenase-2 (COX-2) signaling pathway-related proteins (p-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (p-JNK), p-P38, and COX-2). In conclusion, CFAP61 knockdown facilitated male infertility by suppressing Leydig cell viability and testosterone secretion and enhanced cell apoptosis by activating the MAPK/COX-2 pathway. Our data suggest CFAP61 as a potential therapeutic target for male infertility.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Jianxin Qin
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School of Nantong University, No. 19, Qixiu Road, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
7
|
Greither T, Dejung M, Behre HM, Butter F, Herlyn H. The human sperm proteome-Toward a panel for male fertility testing. Andrology 2023; 11:1418-1436. [PMID: 36896575 DOI: 10.1111/andr.13431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/06/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Although male factor accounts for 40%-50% of unintended childlessness, we are far from fully understanding the detailed causes. Usually, affected men cannot even be provided with a molecular diagnosis. OBJECTIVES We aimed at a higher resolution of the human sperm proteome for better understanding of the molecular causes of male infertility. We were particularly interested in why reduced sperm count decreases fertility despite many normal-looking spermatozoa and which proteins might be involved. MATERIAL AND METHODS Applying mass spectrometry analysis, we qualitatively and quantitatively examined the proteomic profiles of spermatozoa from 76 men differing in fertility. Infertile men had abnormal semen parameters and were involuntarily childless. Fertile subjects exhibited normozoospermia and had fathered children without medical assistance. RESULTS We discovered proteins from about 7000 coding genes in the human sperm proteome. These were mainly known for involvements in cellular motility, response to stimuli, adhesion, and reproduction. Numbers of sperm proteins showing at least threefold deviating abundances increased from oligozoospermia (N = 153) and oligoasthenozoospermia (N = 154) to oligoasthenoteratozoospermia (N = 368). Deregulated sperm proteins primarily engaged in flagellar assembly and sperm motility, fertilization, and male gametogenesis. Most of these participated in a larger network of male infertility genes and proteins. DISCUSSION We expose 31 sperm proteins displaying deviant abundances under infertility, which already were known before to have fertility relevance, including ACTL9, CCIN, CFAP47, CFAP65, CFAP251 (WDR66), DNAH1, and SPEM1. We propose 18 additional sperm proteins with at least eightfold differential abundance for further testing of their diagnostic potential, such as C2orf16, CYLC1, SPATA31E1, SPATA31D1, SPATA48, EFHB (CFAP21), and FAM161A. CONCLUSION Our results shed light on the molecular background of the dysfunctionality of the fewer spermatozoa produced in oligozoospermia and syndromes including it. The male infertility network presented may prove useful in further elucidating the molecular mechanism of male infertility.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Mario Dejung
- Proteomics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Hermann M Behre
- Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Falk Butter
- Department of Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Holger Herlyn
- Anthropology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Zhang D, Lu W, Zhuo Z, Wang Y, Zhang W, Zhang M. Comprehensive analysis of a cuproptosis-related ceRNA network implicates a potential endocrine therapy resistance mechanism in ER-positive breast cancer. BMC Med Genomics 2023; 16:96. [PMID: 37143115 PMCID: PMC10161630 DOI: 10.1186/s12920-023-01511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND While adjuvant endocrine therapy (ET) may decrease the mortality rate of estrogen receptor-positive (ER+) breast cancer (BC), the likelihood of relapse and metastasis due to ET resistance remains high. Cuproptosis is a recently discovered regulated cell death (RCD), whose role in tumors has yet to be elucidated. Thus, there is a need to study its specific regulatory mechanism in resistance to ET in BC, to identify novel therapeutic targets. METHODS The prognostic cuproptosis-related genes (CRGs) in ER+ BC were filtered by undergoing Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses in TCGA-BRCA, and a CRGs risk signature was constructed using the correlation coefficient. Immune infiltration analysis, immune function analysis, tumor microenvironment (TME) analysis, immune checkpoint analysis, immunotherapy response analysis, drug sensitivity analysis, and pathway activation analysis were carried out among the high- and low-risk groups in turn. The central CRG of cuproptosis in ER+ BC resistance to ET was acquired through the intersection of protein interaction network (PPI) analysis, genes differentially expressed (DEGs) between human BC cells LCC9 and MCF-7 (GSE159968), and CRGs with prognostic significance in TCGA-BRCA ER+ BC. The miRNAs upstream of the core CRGs were predicted based on the intersection of 4 databases, miRDB, RNA22, miRWalk, and RNAlnter. Candidate miRNAs consisted of the intersection of predicted miRNAs and miRNAs differentially expressed in the LCC9 and MCF-7 cell lines (GSE159979). Candidate lncRNAs were the intersection of the differential lncRNAs from the LCC9 and MCF-7 cell lines and the survival-related lncRNAs obtained from a univariate Cox regression analysis. Pearson's correlation analysis was performed between mRNA-miRNA, miRNA-lncRNA, and mRNA-lncRNA expression separately. RESULTS We constructed A risk signature of 4-CRGs to predict the prognosis of ER+ BC in TCGA-BRCA, a risk score = DLD*0.378 + DBT*0.201 + DLAT*0.380 + ATP7A*0.447 was used as the definition of the formula. There were significant differences between the high- and low-risk groups based on the risk score of 4-CRGs in aspects of immune infiltration, immune function, expression levels of immune checkpoint genes, and signaling pathways. DLD was determined to be the central CRG of cuproptosis in ER+ BC resistance to ET through the intersection of the PPI network analysis, DEGs between LCC9 and MCF-7 and 4-CRGs. Two miRNAs hsa-miR-370-3p and hsa-miR-432-5p were found taking DLD mRNA as a target, and the lncRNA C6orf99 has been hypothesized to be a competitive endogenous RNA that regulates DLD mRNA expression by sponging off hsa-miR-370-3p and hsa-miR-432-5p. CONCLUSION This study built a prognostic model based on genes related to cuproptosis in ER+ BC. We considered DLD to be the core gene associated with resistance to ET in ER+ BC via copper metabolism. The search for promising therapeutic targets led to the establishment of a cuproptosis-related ceRNA network C6orf99/hsa-miR-370-3p and hsa-miR-432-5p/DLD.
Collapse
Affiliation(s)
- Dongni Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Wenping Lu
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China.
| | - Zhili Zhuo
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Yanan Wang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Weixuan Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| | - Mengfan Zhang
- Oncology Department, China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, China
| |
Collapse
|
9
|
Hartman ML, Czyz M. BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ 2023:10.1038/s41418-023-01158-5. [PMID: 37031274 DOI: 10.1038/s41418-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Proteins from the BCL-2 family control cell survival and apoptosis in health and disease, and regulate apoptosis-unrelated cellular processes. BCL-Gonad (BCL-G, also known as BCL2-like 14) is a non-typical protein of the family as its long isoform (BCL-GL) consists of BH2 and BH3 domains without the BH1 motif. BCL-G is predominantly expressed in normal testes and different organs of the gastrointestinal tract. The complexity of regulatory mechanisms of BCL-G expression and post-translational modifications suggests that BCL-G may play distinct roles in different types of cells and disorders. While several genetic alterations of BCL2L14 have been reported, gene deletions and amplifications prevail, which is also confirmed by the analysis of sequencing data for different types of cancer. Although the studies validating the phenotypic consequences of genetic manipulations of BCL-G are limited, the role of BCL-G in apoptosis has been undermined. Recent studies using gene-perturbation approaches have revealed apoptosis-unrelated functions of BCL-G in intracellular trafficking, immunomodulation, and regulation of the mucin scaffolding network. These studies were, however, limited mainly to the role of BCL-G in the gastrointestinal tract. Therefore, further efforts using state-of-the-art methods and various types of cells are required to find out more about BCL-G activities. Deciphering the isoform-specific functions of BCL-G and the BCL-G interactome may result in the designing of novel therapeutic approaches, in which BCL-G activity will be either imitated using small-molecule BH3 mimetics or inhibited to counteract BCL-G upregulation. This review summarizes two decades of research on BCL-G.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
10
|
Balagannavar G, Basavaraju K, Bajpai AK, Davuluri S, Kannan S, S Srini V, S Chandrashekar D, Chitturi N, K Acharya K. Transcriptomic analysis of the Non-Obstructive Azoospermia (NOA) to address gene expression regulation in human testis. Syst Biol Reprod Med 2023; 69:196-214. [PMID: 36883778 DOI: 10.1080/19396368.2023.2176268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
There is a need to understand the molecular basis of testes under Non-Obstructive Azoospermia (NOA), a state of failed spermatogenesis. There has been a lack of attention to the transcriptome at the level of alternatively spliced mRNAs (iso-mRNAs) and the mechanism of gene expression regulation. Hence, we aimed to establish a reliable iso-mRNA profile of NOA-testes, and explore molecular mechanisms - especially those related to gene expression regulation. We sequenced mRNAs from testicular samples of donors with complete spermatogenesis (control samples) and a failure of spermatogenesis (NOA samples). We identified differentially expressed genes and their iso-mRNAs via standard NGS data analyses. We then listed these iso-mRNAs hierarchically based on the extent of consistency of differential quantities across samples and groups, and validated the lists via RT-qPCRs (for 80 iso-mRNAs). In addition, we performed extensive bioinformatic analysis of the splicing features, domains, interactions, and functions of differentially expressed genes and iso-mRNAs. Many top-ranking down-regulated genes and iso-mRNAs, i.e., those down-regulated more consistently across the NOA samples, are associated with mitosis, replication, meiosis, cilium, RNA regulation, and post-translational modifications such as ubiquitination and phosphorylation. Most down-regulated iso-mRNAs correspond to full-length proteins that include all expected domains. The predominance of alternative promoters and termination sites in these iso-mRNAs indicate their gene expression regulation via promoters and UTRs. We compiled a new, comprehensive list of human transcription factors (TFs) and used it to identify TF-'TF gene' interactions with potential significance in down-regulating genes under the NOA condition. The results indicate that RAD51 suppression by HSF4 prevents SP1-activation, and SP1, in turn, could regulate multiple TF genes. This potential regulatory axis and other TF interactions identified in this study could explain the down-regulation of multiple genes in NOA-testes. Such molecular interactions may also have key regulatory roles during normal human spermatogenesis.
Collapse
Affiliation(s)
- Govindkumar Balagannavar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kavyashree Basavaraju
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Akhilesh Kumar Bajpai
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Sravanthi Davuluri
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Shruthi Kannan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Vasan S Srini
- Manipal Fertility, Manipal Hospital, Bengaluru, Karnataka, India
| | | | - Neelima Chitturi
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Kshitish K Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| |
Collapse
|
11
|
Zhukov OB, Chernykh VB. Artificial intelligence in reproductive medicine. ANDROLOGY AND GENITAL SURGERY 2023. [DOI: 10.17650/2070-9781-2022-23-4-15-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- O. B. Zhukov
- Рeoples’ Friendship University of Russia (RUDN University); Association of Vascular Urologists and Reproductologists
| | - V. B. Chernykh
- Research Centre for Medical Genetics; N.I. Pirogov Russian National Research Medical University
| |
Collapse
|
12
|
Whole-Genome Profile of Greek Patients with Teratozοοspermia: Identification of Candidate Variants and Genes. Genes (Basel) 2022; 13:genes13091606. [PMID: 36140773 PMCID: PMC9498395 DOI: 10.3390/genes13091606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 01/09/2023] Open
Abstract
Male infertility is a global health problem that affects a large number of couples worldwide. It can be categorized into specific subtypes, including teratozoospermia. The present study aimed to identify new variants associated with teratozoospermia in the Greek population and to explore the role of genes on which these were identified. For this reason, whole-genome sequencing (WGS) was performed on normozoospermic and teratozoospermic individuals, and after selecting only variants found in teratozoospermic men, these were further prioritized using a wide range of tools, functional and predictive algorithms, etc. An average of 600,000 variants were identified, and of them, 61 were characterized as high impact and 153 as moderate impact. Many of these are mapped in genes previously associated with male infertility, yet others are related for the first time to teratozoospermia. Furthermore, pathway enrichment analysis and Gene ontology (GO) analyses revealed the important role of the extracellular matrix in teratozoospermia. Therefore, the present study confirms the contribution of genes studied in the past to male infertility and sheds light on new molecular mechanisms by providing a list of variants and candidate genes associated with teratozoospermia in the Greek population.
Collapse
|
13
|
Li X, Zhou W, Zhu C, Liu J, Ming Z, Ma C, Li Q. Multi-omics analysis reveals prognostic and therapeutic value of cuproptosis-related lncRNAs in oral squamous cell carcinoma. Front Genet 2022; 13:984911. [PMID: 36046246 PMCID: PMC9421074 DOI: 10.3389/fgene.2022.984911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Extensive research revealed copper and lncRNA can regulate tumor progression. Additionally, cuproptosis has been proven can cause cell death that may affect the development of tumor. However, there is little research focused on the potential prognostic and therapeutic role of cuproptosis-related lncRNA in OSCC patients.Methods: Data used were for bioinformatics analyses were downloaded from both the TCGA database and GEO database. The R software were used for statistical analysis. Mapping was done using the tool of FigureYa.Results: The signature consist of 7 cuproptosis-related lncRNA was identified through lasso and Cox regression analysis and a nomogram was developed. In addition, we performed genomic analyses including pathway enrichment analysis and mutation analysis between two groups. It was found that OSCC patients were prone to TP53, TTN, FAT1 and NOTCH1 mutations and a difference of mutation analysis between the two groups was significant. Results of TIDE analysis indicating that patients in low risk group were more susceptible to immunotherapy. Accordingly, results of subclass mapping analysis confirmed our findings, which revealed that patients with low riskscore were more likely to respond to immunotherapy.Conclusion: We have successfully identified and validated a novel prognostic signature with a strong independent predictive capacity. And we have found that patients with low riskscore were more susceptible to immunotherapy, especially PD-1 inhibitor therapy.
Collapse
Affiliation(s)
- Xiaoguang Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenbin Zhou
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Chang Zhu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jiechen Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zedong Ming
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Cong Ma
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qing Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinnan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinnan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- *Correspondence: Qing Li,
| |
Collapse
|